Advertisement

Acoustic Microscope for the Tissue Characterization in Medicine and Biology

  • M. Tanaka
  • H. Okawai
  • N. Chubachi
  • R. Suganuma
  • K. Honda
Conference paper

Abstract

In order to develop a new ultrasonics application to medicine, it is necessary to use effectively the information which the ultrasound possesses and to know the acoustic properties of the tissue in the normal and diseased states.

Keywords

Sound Speed Acoustic Property Specimen Thickness Ultrasonic Transducer Ultrasonic Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sokolov S., The ultrasonic microscope. Akadema Nauk SSSR, Doklady 64, 333–335, 1949.Google Scholar
  2. 2.
    Dunn F. and Fry W., Ultrasonic absorption microscope. J. Acoust. Soc. Am. 31, 632–633, 1959.CrossRefGoogle Scholar
  3. 3.
    Kessler L.W., Palermo P. R. and Korpel A., Practical high resolution acoustic microscopy. Acoustic holography 4, 51–71 (Wade G. ed.) Plenum Press, 1972.CrossRefGoogle Scholar
  4. 4.
    Lemons R.A. and Quate C.F., A scanning acoustic microscope. Ultrason. Symp. Proc. IEEE, 18–20, 1973.Google Scholar
  5. 5.
    Goss S.A. and O’Brin W.D.Jr., Direct ultrasonic velocity measurements of mammalian collagen threads. J. Acoust. Soc. Am. 65(2), 507–511, 1979.CrossRefGoogle Scholar
  6. 6.
    O’Brin W.D.Jr. Olerud J. Shung K.K., et al., Quantitative acoustic assessment of wound maturation with acoustic microscopy. J. Acoust. Soc. Am 69(2), 575–579, 1981.CrossRefGoogle Scholar
  7. 7.
    Tervola K.M.U., Gummer M.A., Erdman J.W.Jr., and O’Brien W.D.Jr., Ultrasonic attenuation and velocity properties in rat liver as a function of fat concentration: A study at 100 MHz using a scanning laser acoustic microscope. J. Acoust. Soc. Am. 77(1), 307–313, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Quate C.F., Acoustic microscopy (Recollections). IEEE Trans. Sonics. Ultrason. SU- 32, 132–135, 1985.Google Scholar
  9. 9.
    J. Kushibiki and N. Chubachi, Material characterization by line-focused-beam acoustic microscope. IEEE Trans. Sonics, Ultrason. SU-32(2), 189–212, 1985.Google Scholar
  10. 10.
    Lee C.C. Tsai C.S. and Cheng X., Complete characterization of thin-and thick-film materials using wideband reflection acoustic microscopy. IEEE Trans. Sonics. Ultrason. SU-32, 248–258, 1985.CrossRefGoogle Scholar
  11. 11.
    Okawai H., Tanaka M., Chubachi N. and Kushibiki J., Non-contact simultaneous measurement of thickness and acoustic properties of a biological tissue using focused wave in a scanning acoustic microscope. Proc. 7th Symp. Ultrason. Elec, Kyoto, Jpn., J. Appl. Phys. Supple. 26–1, 52–54, 1987.Google Scholar
  12. 12.
    Okawai H., Tanaka M., and Dunn F, Non-contact acoustic method for the simultaneous measurement of thickness and acoustic properties of biological tissues. Ultrasonics Vol.28(6), 401–410, November 1990.PubMedCrossRefGoogle Scholar
  13. 13.
    Fry W.J. and Dunn F., Analysis and experimental methods in biological research. (Physical techniques in biological research 4. Chapter 6.) 261–394. Academic Press (New York), 1962.Google Scholar
  14. 14.
    Dunn F., Edmonds P.D., and Fry W.J., Absorption and dispersion of ultrasound in biological media. (Biological Engineering. Schwan H.P. ed. Intra-university electronics 9, Chapter3) (McGraw-Hill), 205–332, 1969.Google Scholar
  15. 15.
    Pauley H. and Schwan H.P., Mechanism of absorption of ultrasound in liver tissue. J. Acoust. Soc. Am. 50(2), 692–699, 1971.CrossRefGoogle Scholar
  16. 16.
    Bamber J.C., Fry M.J., Hill C.R., and Dunn F., Ultrasonic attenuation and backscattring by mammalian organs as function of time after excision. Ultrasound in Med. & Biol., 3. 15–20, 1977.CrossRefGoogle Scholar
  17. 17.
    Johnston R.L., Goss S.A., Maynard V., Brady J.K., Frizell L.A., O’Braien W.D.Jr., and Dunn F., Elements of tissue characterization (Part I. Ultrasonic propagation properties.) National Beaurou standards, Spec. Publ. 525, 19–27, 1979.Google Scholar
  18. 18.
    Goss S.A., Johnston R.L., Maynard V., Nider L., Frizzell L.A., O’Brien W.D.Jr., and Dunn F., Elements of tissue characterization (Part II. Ultrasonic parameter measurements.) National Beaurou standards, Spec. Publ. 525, 43–51,1979.Google Scholar
  19. 19.
    Chivers R.C. and Hill C.R., Ultrasonic attenuation in human tissue. Ultrasound in Med. & Biol. 2, 25–29, 1975.CrossRefGoogle Scholar
  20. 20.
    Goss S.A., Frizzell L.A., and Dunn F., Ultraconic absorption and attenuation in mammalian tissues. Ultrasound in Med. & Biol. 5, 181–186, 1979.CrossRefGoogle Scholar
  21. 21.
    Pinkerton J.M.M., The absorption of ultrasonic waves in liquids and its relation to molecular constitution. Proc. Phys. Soc. B62, 129–141, 1949.CrossRefGoogle Scholar
  22. 22.
    Greenspan M. and Tschiegg C.E., Tables of the speed of sound in water. J. Acoust. Son. Am. 31, 75–76, 1958.CrossRefGoogle Scholar
  23. 23.
    Watanabe T., Manual for preparating the pathological tissue specimen. Japanese pathological society 36–50, 1981 (in Japanese).Google Scholar
  24. 24.
    Mori H. and Ishiguro K., Tissue shrinking during embedding. 11th report of meeting for tissue preparation technique 1977 (in Japanese).Google Scholar
  25. 25.
    Kremakaw F.W., Barnes R.W. and MacGraw C.P., Ultrasonic attenuation and propagation speed in normal brain. J. Acoust. Soc. Am. 70. 29–38, 1981.CrossRefGoogle Scholar
  26. 26.
    Garstensen E.L. and Schwan H.P., Acoustic properties of hemoglobin solutions. J. Acoust. Soc. Am. 31, 305–301, 1959.CrossRefGoogle Scholar
  27. 27.
    O’Donnell M., Jaynes E.T. and Miller J.G., General relationships between ultrasonic attenuation and dispersion. J. Acoust. Soc. Am. 63, 1935–1937, 1978.CrossRefGoogle Scholar
  28. 28.
    Okawai H., Tanaka M., Dunn F., Chubachi N. and Honda K., Quantitative display of acoustic properties of the biological tissue elements. Acoustical Imaging 17, 193–201, 1989.CrossRefGoogle Scholar
  29. 29.
    Okawai H., Ohtsuki S., Tanaka M. and Dunn F., A frequency sweeped type non- contact acoustic property measurement method. JSUM proceeding 56, 267–268, May 1990.Google Scholar

Copyright information

© Springer Japan 1996

Authors and Affiliations

  • M. Tanaka
  • H. Okawai
  • N. Chubachi
  • R. Suganuma
  • K. Honda

There are no affiliations available

Personalised recommendations