Skip to main content

Electrobiology of Root Hairs

  • Chapter
Root Hairs

Abstract

During growth and development of the plant root, root hairs often play a key role in nodulation, and water and ion uptake. Root hairs are not an obligatory cell type on the root surface. However, when present, they have highly active respiration (Connoly and Berlyn 1996), and are known to preferentially express a number of transport proteins, such as the plasma membrane H+ ATPase (Samuels et al. 1992), ammonium and nitrate transporters (Lauter et al. 1996), and a phosphate transporter (Daram et al. 1998). In fact, root hair length increases when phosphorus levels are low (Bates and Lynch 1996). The preferential expression of ion transporters and morphological responses to nutrient conditions both suggest that root hairs have special and unique functions in ion transport. In addition, they are an ideal system for examining ion transport mechanisms in situ because they have anatomical and cytological characteristics that simplify the micromanipulation, impalement, and micro-injection necessary to characterize ion transport. They are readily accessible and microscopic imaging is straightforward because of the lack of interference by surrounding tissue. This even results in an ability to manipulate specific intracellular targets, useful not only in studies of ion transport, but also cellular signal transduction in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammann D (1986) Ion-selective microelectrodes. Principles, design and application. Springer-Verlag, Berlin, New York. pp 1–346

    Google Scholar 

  • Anderson BE, Ward JM, Schroeder JI (1994) Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiol 104: 1177–1183

    PubMed  CAS  Google Scholar 

  • Arif I, Newman IA, Keenlyside N (1995) Proton flux measurements from tissues in buffered solution. Plant Cell Environ 18: 1319–1324

    Article  CAS  Google Scholar 

  • Ayling SM (1993) The effect of ammonium ions on membrane potential and anion flux in roots of barley and tomato. Plant Cell Environ 16: 297–303

    Article  CAS  Google Scholar 

  • Ayling SM, Butler RC (1993) Time-series analysis of measurements on living cells illustrated by analysis of particle movement in the cytoplasm of tomato root hairs. Protoplasma 172: 124–131

    Article  Google Scholar 

  • Ayling SM, Brownlee C, Clarkson DT (1994) The cytoplasmic streaming response of tomato root hairs to auxin: Observations of cytosolic calcium levels. J Plant Physiol 143: 184–188

    Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19: 529–538

    Article  CAS  Google Scholar 

  • Beilby MJ (1984) Current-voltage characteristics of the proton pump at Chara plasmalemma: I. pH dependence. J Memb Biol 81: 113–125

    Article  Google Scholar 

  • Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR (1990) Potassium channel currents in intact stomata! guard cells: Rapid enhancement by abscisic acid. Planta 180: 445–455

    Article  CAS  Google Scholar 

  • Blatt MR, Slayman CL (1983) KCI leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell. J Memb Biol 72: 223–234

    Article  CAS  Google Scholar 

  • Blatt MR, Rodriguez-Navarro A, Slayman CL (1987) Potassium-proton symport in Neurospora: Kinetic control by pH and membrane potential. J Membrane Biol 98: 169189

    Google Scholar 

  • Boyer PD (1988) Bioenergetic coupling to proton motive force: Should we be considering hydronium ion coordination and not group protonation? Trends Biochem Science 13: 57

    Google Scholar 

  • Briskin DP, Gawienowski MC (1996) Role of the plasma membrane H+-ATPase in K+ transport. Plant Physiol 111: 1199–1207

    PubMed  CAS  Google Scholar 

  • Castellan GW (1971) Physical Chemistry. Addison-Wesley. Reading, MA. pp 357–381

    Google Scholar 

  • Clarkson DT, Brownlee C, Ayling SM (1988) Cytoplasmic calcium measurements in intact higher plant cells: Results from fluorescent ratio imaging of fura-2. J Cell Science 91: 71–80

    CAS  Google Scholar 

  • Connolly JH, Berlyn GP (1996) Cytochemical assay for differential respiratory activity in roots and root hairs. Biotech Histochem 71: 197–201

    Article  PubMed  CAS  Google Scholar 

  • Damm P, Brunner S, Persson BL, Amrhein N, Bucher M (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206: 225–233

    Article  Google Scholar 

  • Dimroth P (1995) On the way towards the Na+-binding site within the F,F0 ATPase of Propiongenium modestum. Biochem Soc Trans 23: 770–775

    PubMed  CAS  Google Scholar 

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120: 3247–3255

    CAS  Google Scholar 

  • Felle H (1982) Effects of fusicoccin upon membrane potential, resistance and current-voltage characteristics in root hairs of Sinapis alba. Plant Sci Lett 25: 219–225

    Article  CAS  Google Scholar 

  • Felle H (1988) Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: Interaction of Cat+ and H+? Planta 176: 248–255

    Article  CAS  Google Scholar 

  • Felle HH (1993) Ion-selective microelectrodes: Their use and importance in modern cell biology. Bot Acta 106: 5–12

    CAS  Google Scholar 

  • Felle HH (1994) The H+/Cl-symporter in root hairs of Sinapis alba: An electrophysiological study using ion-selective microelectrodes. Plant Physiol 106: 11311136

    Google Scholar 

  • Felle HH (1996) Control of cytoplasmic pH under anoxic conditions and its implication for plasma membrane proton transport in Medicago sativa root hairs. J Exper Bot 47: 967973

    Google Scholar 

  • Felle H, Bertl A (1986) The fabrication of H`-selective liquid-membrane micro-electrode for use in plant cells. J Exp Bot 37: 1416–1428

    Article  CAS  Google Scholar 

  • Felle H, Hepler PK (1997) The cytosolic Ca’ concentration gradient of Sinapsis alba root hairs as revealed by Ca“-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol 114: 39–45

    PubMed  CAS  Google Scholar 

  • Felle HH, Tretyn A. Wagner G (1992) The role of the plasma-membrane Ca“-ATPase in Ca” homeostasis in Sinapis alba root hairs. Planta 188: 306–313

    CAS  Google Scholar 

  • Forestier C, Bouteau F, Leonhardt N, Vavasseur A (1998) Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. Eur J Physiol 436: 920–927

    Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Molec Biol 49: 669–696

    Article  CAS  Google Scholar 

  • Franks PJ, Cowan IR, Tyerman SD, Cleary AL, Lloyd J, Farquhar JD (1995) Guard cell pressure/aperture characteristics measured with a pressure probe. Plant Cell Environ 18: 795–800

    Article  Google Scholar 

  • Garrill A, Lew RR, Heath IB (1992) Stretch-activated Cat’ and Ca“-activated K+ channels in the hyphal tip plasma membrane of the oomycete Saprolegnia ferax. J Cell Sci 101: 721–730

    CAS  Google Scholar 

  • Garrill A, Jackson SL, Lew RR, Heath IB (1993) Ion channel activity and tip growth:tip-localized, stretch-activated channels generate a Ca’ gradient that is required for tip growth in the oomycete Saprolegnia ferai. J Eur Cell Biol 60: 358–365

    CAS  Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K’ channels in root hairs of wheat. A mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiol 105: 1399–1408

    Google Scholar 

  • Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10: 869–882

    Article  CAS  Google Scholar 

  • Grabov A, Bottger M (1994) Are redox reactions involved in regulation of K’ channels in the plasma membrane of Limnobium stoloniferum root hairs? Plant Physiol 105: 927935

    Google Scholar 

  • Griffiths A, Parry AD, Jones HG, Tomos AD (1996) Abscisic acid and turgor pressure regulation in tomato roots. J Plant Physiol 149: 372–376

    Article  CAS  Google Scholar 

  • Hermann A, Felle HH (1995) Tip growth in root hair cells of Sinapis alba L.: Significance of internal and external Ca“ and pH. New Phytol 129: 523–533

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MA, ix and 426 pp

    Google Scholar 

  • Hirayama BA, Loo DDF, Wright EM (1994) Protons drive sugar transport through the Na’/glucose cotransporter (SGLT1). J Biol Chem 269: 21407–21410

    PubMed  CAS  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918–921

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Overall RL (1996) Measurement of the electrical resistance of plasmodesmata and membranes of corn suspension-culture cells. Planta 199: 537–544

    Article  Google Scholar 

  • Horowitz P and Hill W (1989) The art of electronics. Cambridge University Press, pp 159

    Google Scholar 

  • Jones DL, Shaff JE, Kochian LV (1995) Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. I. Inhibition of tip growth by aluminum. Planta 197: 672–680

    Google Scholar 

  • Jones DL, Gilroy S, Larsen PB, Howell SH, Kochian LV (1998) Effect of aluminum on cytoplasmic Cat-’ homeostasis in root hairs of Arabidopsis thaliana. Planta 206: 378–387

    Article  PubMed  CAS  Google Scholar 

  • Lauter F-R, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci 93: 8139–8144

    Article  PubMed  CAS  Google Scholar 

  • Legarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C (1996) Tissue-specific expression of Arabidopsis AKT! gene is consistent with a role in K+ nutrition. Plant J 9: 195–203

    Article  Google Scholar 

  • Levina NN, Lew RR, Heath IB (1994) Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferai. J Cell Sci 107: 127–134

    PubMed  CAS  Google Scholar 

  • Lew RR (1989) Calcium activates an electrogenic proton pump in Neurospora plasma membrane. Plant Physiol 91: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1991) Electrogenic transport properties of growing Arabidopsis thaliana root hairs. The plasma membrane proton pump and potassium channels. Plant Physiol 97: 1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1994) Regulation of electrical coupling between Arabidopsis root hairs. Planta 193: 67–73

    Article  CAS  Google Scholar 

  • Lew RR (1996) Pressure regulation of the electrical properties of growing Arabidopsis thaliana L. root hairs. Plant Physiol 112: 1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1998) Immediate and steady state extracellular ionic fluxes of growing Arabidopsis thaliana root hairs under hyperosmotic and hypoosmotic conditions. Physiol Plant 104: 397–404

    Article  CAS  Google Scholar 

  • Lew RR (1998a) Mapping fungal ion channel locations. Fung Genet Biol 24: 69–76

    Article  CAS  Google Scholar 

  • Lew RR, Spanswick RM (1984) Characterization of the electrogenicity of soybean (Glycine max L.) Roots: ATP dependence and the effect of ATPase inhibitors. Plant Physiol 75: 1–6

    Google Scholar 

  • Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta 191: 302–307.

    Article  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1995) Contrasting roles of two K+ -channel types in root cells of Arabidopsis thaliana. Planta 197: 456–464

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin-and ethylene-associated process. Plant Physiol 106: 1335–1346

    PubMed  CAS  Google Scholar 

  • Meharg AA, Blatt MR (1995) NO transport across the plasma membrane of Arabidopsis thaliana root hairs: Kinetic control by pH and membrane voltage. J Memb Biol 145: 4966

    Google Scholar 

  • Meharg AA, Maurousset L, Blatt MR (1994) Cable correction of membrane currents recorded from root hairs of Arabidopsis thaliana L. J Exp Bot 45: 1–6

    Article  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiol 108: 1–6

    Google Scholar 

  • Moog PR, van der Kooij TAW, Bruggemann W, Schielfelbein JW, Kuiper PJC (1995) Responses to iron deficiency in Arabidopsis thaliana: The Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195: 505–513

    Google Scholar 

  • Noble PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego, xx and 635 pp

    Google Scholar 

  • Ogden D (1994) Microelectrode techniques. The Plymouth workshop handbook. Second edition. The Company of Biologists Ltd, Cambridge, x and 448 pp

    Google Scholar 

  • Palmgren MG (1998) Proton gradients and plant growth: role of the plasma membrane 11- ATPase. Adv Bot Res 28: 1–70

    Article  CAS  Google Scholar 

  • Pritchard J, Fricke W, Tomos D (1996) Turgor-regulation during extension growth and osmotic stress of maize roots. An example of single-cell mapping. Plant Soil 187: 1121

    Google Scholar 

  • Purves RD (1981) Microelectrode methods of intracellular recording and ionophoresis. Academic Press, London, x and 146 pp

    Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In Kandel ER (ed) Handbook of Physiology, Vol 1, American Physiological Society, Bethesda, Maryland, pp 79–97

    Google Scholar 

  • Ramirez JA, Vacata V, McCusker JH, Haber JE, Mortimer RK, Owen WG, Lecar H (1989) ATP-sensitive K* channels in a plasma membrane H*-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 86: 7866–7870

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397: 694–697

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A, Blatt MR, Slayman CL (1986) A potassium-proton symport in Neurospora crassa. J Gen Physiol 87: 649–674

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Newman IA, Arif I (1992) Rapid calcium exchange for protons and potassium in cell walls of Chara. Plant Cell Environ 15: 675–683

    Article  CAS  Google Scholar 

  • Sakmann B, Neher E (1995) Single channel recording. Second edition. Plenum Press, New York, London, xxii and 700 pp

    Google Scholar 

  • Samuels AL, Fernando M, Glass ADM (1992) Immunofluorescent localization of plasma membrane H*-ATPase in barley roots and effect of K nutrition. Plant Physiol 99: 15091514

    Google Scholar 

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci 94: 2745–2750

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187: 455–459

    Article  CAS  Google Scholar 

  • Schnall JA, Quatrano RS (1992) Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol 100: 216–218

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40: 61–94

    Article  CAS  Google Scholar 

  • Silverman FP, Assiamah AA, Bush DS (1998) Membrane transport and cytokinin action in root hairs of Medicago sativa. Planta 205: 23–31

    Article  CAS  Google Scholar 

  • Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119: 1073–1082

    Google Scholar 

  • Smith RD, Wilson JE, Walker JC, Baskin TI (1994) Protein-phosphatase inhibitors block root hair growth and alter cell shape of Arabidopsis roots. Planta 194: 516–524

    Article  CAS  Google Scholar 

  • Starzak ME (1984) The physical chemistry of membranes. Academic Press, Orlando, x and 334 pp

    Google Scholar 

  • Thomas RC (1978) Ion-sensitive intracellular microelectrodes. How to make and use them. Academic Press, London, New York, San Francisco. xiii and 110 pp

    Google Scholar 

  • Tretyn A, Wagner G, Felle HH (1991) Signal transduction in Sinapis alba root hairs: Auxins as external messengers. J Plant Physiol 139: 187–193

    Google Scholar 

  • Tsuchiya K, Wang W, Giebisch G, Welling PA (1992) ATP is a coupling modulator of parallel Na-K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci 89: 6418–6422

    Article  PubMed  CAS  Google Scholar 

  • Ullrich CI, Novacky AJ (1990) Extra-and intra-cellular pH and membrane potential changes induced by uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol 94: 1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Crawford NM (1996) Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. Proc Natl Acad Sci 93: 9297–9301

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Liu D, Crawford NM (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci 95: 15134–15139

    Article  PubMed  CAS  Google Scholar 

  • Wang T-B, Gassmann W, Rubio F, Schroeder JI, Glass ADM (1998) Rapid up-regulation of HKTI, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118: 651–659

    Article  PubMed  Google Scholar 

  • Weiss TF (1996) Cellular biophysics. Volume 2: Electrical properties. MIT Press, Cambridge MA, pp 1–162

    Google Scholar 

  • Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12: 427–439

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman U, Steudle E (1974) Hydraulic conductivity and volumetric elastic modulus in giant algal cells: Pressure-and volume-dependence. In: Zimmerman U, Dainty J (Eds) Membrane transport in plants. Springer-Verlag, New York, Heidelberg, Berlin. pp 64–71

    Google Scholar 

  • Zimmerman U, Rygol J, Balling A, Klock G, Metzeler A, Haase A (1992) Radial turgor and osmotic pressure profiles in intact and excised roots of Aster tripolium. Plant Physiol 99: 186–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Lew, R.R. (2000). Electrobiology of Root Hairs. In: Ridge, R.W., Emons, A.M.C. (eds) Root Hairs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68370-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68370-4_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68372-8

  • Online ISBN: 978-4-431-68370-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics