Skip to main content

Cell Cleaving: A Method for Studying the Extracellular Matrix-Cytoskeleton-Plasma Membrane Continuum in Root Hairs

  • Chapter
Root Hairs
  • 273 Accesses

Abstract

The cell surface is an important domain due to its involvement in the interaction between cell and environment, cell morphology and cell signalling. The fundamental importance of the cell surface underlies the need for its careful study. It functions in processes such as signal transduction, endocytosis, exocytosis, cell division, cell polarity and cell expansion. Cleaving techniques can be especially informative in studies using easily accessible root hairs. In this chapter, we describe cell cleaving techniques and their use in the study of the cell surface of root hairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggeler J, Takemura R, Werb Z (1983) High-resolution three dimensional view of membrane associated clathrin and cytoskeleton in critical point dried macrophages. J Cell Biol 97: 1452

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman PC and Reese TS (1984) the structure of cytoplasm in directly frozen cultures cells. 1. Filamentous networks and the cytoplasmic ground substance. J Cell Biol 99: 1655–1668

    Article  Google Scholar 

  • Boyles J, Bainton D (1979) Changing patterns of plasma membrane-associated filaments during the initial phases of polymorphonuclear adherence. J Cell Biol 82: 347

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC (1986) Cell wall texture in root hairs of the genus Equisetum. Can J Bot 64: 2201–2206

    Article  Google Scholar 

  • Emons (1989) Helicoidal microfibril deposition in a tip-growing cell an microtubule alignment during tip morphogenesis: a dry cleaving and freeze substitution study. Can J Bot 67: 2401–2408

    Article  Google Scholar 

  • Emons AMC (1994) Winding threads around plant cells: a geometrical model for microfibril deposition. Plant Cell and Env 17: 3–14

    Article  Google Scholar 

  • Emons AMC, Derksen J (1986) Microfibrils, microtubules and microfilaments of the trichoblast of Equisetum hyemale. Acta Bot Neerl 35: 331–320

    Google Scholar 

  • Emons AMC, Kieft H (1994) Winding threads around plant cells: applications of the geometrical model for microfibril deposition. Protoplasma 180: 59–69

    Article  Google Scholar 

  • Emons AMC, Mulder BM (1997) The architecture of the plant cell wall. Comments on Theor Biol 4: 115–131

    Google Scholar 

  • Emons AMC, Mulder BM (1998) The making of the architecture of the plant cell wall: How cells exploit geometry. Proc Natl Acad Sci USA 95: 7215–7219

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC, Mulder BM (2000) How the deposition of cellulose microfibrils builds cell wall architecture. Trends in Plant Sci 5: 35–40

    Article  CAS  Google Scholar 

  • Emons AMC, Traas JA (1986) Coated pits and coated vesicles on the plasma membrane of plant cells. Eur J Cell Biol 41: 57–64

    Google Scholar 

  • Emons AMC, Van Maaren N (1987) Helicoidal cell wall texture in root hairs. Planta 170: 145–151

    Article  Google Scholar 

  • Emons AMC, Wolters-Arts AMS, Traas J, Derksen J (1990) The effect of colchicine on microtubules and microfibrils in root hairs. Acta Bot Neerl 39: 19–27

    CAS  Google Scholar 

  • Heuser J (1980) Three dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol 84: 560–583

    Article  PubMed  CAS  Google Scholar 

  • Heuser J, Kirschner M (1980) Filament organization revealed in platinum replicas of freeze dried cytoskeleton. J Cell Biol 86: 212–234

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Heuser JE (1981) Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J Cell Biol 91: 399–409

    Article  PubMed  CAS  Google Scholar 

  • McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96: 323–334

    Google Scholar 

  • Mesland D, Spiele H (1983) Plasma membrane associated filament systems in cultured cells visualized by dry cleaving. J Cell Sci 64: 351–364

    PubMed  CAS  Google Scholar 

  • Mesland D, Spiele H (1984) Brief extraction with detergent induces the appearance of many plasma membrane associated microtubules in hepatotic cells. J Cell Sci 68: 113

    PubMed  CAS  Google Scholar 

  • Mesland D, Spiele H, Roos E (1981) Membrane associated cytoskeleton and coated vesicles in cultured hepatocytes visualized by dry cleaving. Exp Cell Res 132: 169

    Article  PubMed  CAS  Google Scholar 

  • Nermut MV (1982) The cell monolayer technique in membrane research. Eur J Cell Biol 28: 160

    PubMed  CAS  Google Scholar 

  • Nicol A, Nermut M, Doeinck A, Robenek H, Wiegant C, Jokusch BM (1987) Labeling of structural elements at the ventral plasma membrane of fibroblasts with the immunogold technique. J Histochem Cytochem 35: 499–506

    Article  PubMed  CAS  Google Scholar 

  • Pietrasante LI, Schaper A, Jovin TM (1994) Imaging subcellular structures of rat mammary carcinoma cells by scanning force microscopy. J Cell Sci 107: 2427–2437

    Google Scholar 

  • Ris H (1985) The cytoplasmic filament system in critical point dried whole mounts and plastic embedded sections. J Cell Biol 100: 1474–1487

    Article  PubMed  CAS  Google Scholar 

  • Roos E, Spiele H, Feltkamtp CA, Huisman H, Wiegant FA, Traas JA, Mesland DAM (1985) Localization of cell surface glycoproteins in membrane domains associated with the underlying filament network. J Cell Biol 101: 1817

    Article  PubMed  CAS  Google Scholar 

  • Sassen MMA, Traas JA, Wolters-Arts AMC (1985) Deposition of cellulose microfibrils in cell walls of root hairs. Eur J Cell Biol 37: 21–26

    Google Scholar 

  • Traas JA (1984) Visualization of the membrane bound cytoskeleton and coated pits of plant cells by means of dry cleaving. Protoplasma 119: 212

    Article  Google Scholar 

  • Traas JA (1989) Colloidal gold labeling of microtubules in cleaved whole mounts of cells. In: Hayat (Ed) Colloidal gold. Vol.2. Academic Press, pp 227–241

    Google Scholar 

  • Traas JA, Braat P, Emons AMC. Meekes H, Derksen J (1985) Microtubules in root hairs. J Cell Sci 76:303–320

    PubMed  CAS  Google Scholar 

  • Traas J, Derksen J (1989) Microtubules and cellulose microfibrils in plant cells; simultaneous demonstration on dry cleave preparations. Eur J Cell Biol 48: 159–164

    Google Scholar 

  • Traas JA, Kengen H (1986) Gold labeling of microtubules in cleaved whole mounts of cortical cells. J Histochem Cytochem 34: 1501

    Article  PubMed  CAS  Google Scholar 

  • Traas J, Ramaekers F (1986) The membrane associated cytoskeleton in cultured lens cells. Electron microscopical visualization in cleaved whole mount preparations and platinum replicas. Exp Eye Res 43: 519–528

    Article  PubMed  CAS  Google Scholar 

  • van de Wel NN, Putman CAJ, van Noort SJT, de Grooth BG, Emons AMC (1996) Atomic force microscopy of pollen grains, cellulose microfibrils and protoplasts. Protoplasma 194: 29–39

    Article  Google Scholar 

  • Wiegant F, Blok F, Defize L, Linnemans W, Verkley A, Boonstra J (1986) Epidermal growth factor associated with cytoskeletal elements of epidermoid carcinoma (A431) cells. J Cell Biol 103: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Wolters-Arts AMC, Sassen MMA (1991) Deposition and reorientation of cellulose microfibrils in elongating cells of Petunia stylar tissue. Planta 185: 179–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Emons, A.M.C., Traas, J.A. (2000). Cell Cleaving: A Method for Studying the Extracellular Matrix-Cytoskeleton-Plasma Membrane Continuum in Root Hairs. In: Ridge, R.W., Emons, A.M.C. (eds) Root Hairs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68370-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68370-4_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68372-8

  • Online ISBN: 978-4-431-68370-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics