Skip to main content

The Root Hair Actin Cytoskeleton as Backbone, Highway, Morphogenetic Instrument and Target for Signalling

  • Chapter
Root Hairs

Abstract

The plant actin cytoskeleton is a structural cell element that connects cytoplasmic components with each other, with the cell surface and with neighbouring cells through plasmodesmata. It is the dynamic backbone of cytoplasmic strands. Along this backbone, cell components move and are targeted to specific sites in the cell. The specific targeting of cell organelles is instrumental in cell morphogenesis. Moreover, the actin cytoskeleton may connect to receptors, transduce signals and mediate cell responses. Actin monomers and filaments are bound to actin binding proteins that determine actin’s function in place and time. Since root hairs are accessible for the application of signal molecules and drugs, and can be visualized and manipulated in the living state, these tip-growing cells are ideal for the study of the functions of the actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderem A (1992) Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci 17: 438–443

    Article  PubMed  CAS  Google Scholar 

  • Aizawa H, Fukui Y, Yahara I (1997a) Live dynamics of Dictyostelium cofilin suggests a role in remodelling actin latticework into bundles. J Cell Sci 110: 2333–2344

    PubMed  CAS  Google Scholar 

  • Aizawa H, Sameshima M, Yahara I (1997b) A green fluorescent protein-actin fusion protein dominantly inhibits cytokinesis, cell spreading, and locomotion in Dictyostelium. Cell Struct Funct 22: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Allen NS, Bennett MN (1996) Electro-optical imaging of F-actin and endoplasmic reticulum in living and fixed plant cells. Scanning Microsc Suppl 10: 177–187

    PubMed  CAS  Google Scholar 

  • Andersland JM, Fisher DD, Wymer CL, Cyr RJ, Parthasarathy MV (1994) Characterization of a monoclonal antibody prepared against plant actin. Cell Motil Cytoskeleton 29: 339–344

    Article  PubMed  CAS  Google Scholar 

  • Ayscough KR (1998) In vivo functions of actin-binding proteins. Curr Opin Cell Biol 10: 102–111

    Article  PubMed  CAS  Google Scholar 

  • Ballestrem C, Wehrle-Haller B, Imhof BA (1998) Actin dynamics in living mammalian cells. J Cell Sci 111: 1649–1658

    PubMed  CAS  Google Scholar 

  • Bonnett HT, Newcomb EH (1966) Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma 62: 59–75

    Article  Google Scholar 

  • Braun M, Baluska F, Von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209: 435–443

    Article  PubMed  CAS  Google Scholar 

  • Cardenas L, Vidali L, DomĂ­nguez J, PĂ©rez H, Sanchez F, Hepler PK, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116: 871–877

    Article  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322

    Article  PubMed  CAS  Google Scholar 

  • Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115: 465–483

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Clarke SR, Staiger CJ, Gibbon BC, Franklin-Tong VE (1998) A potential signalling role for profilin in pollen of Papaver rhoeas. Plant Cell 10: 967–979

    Article  PubMed  CAS  Google Scholar 

  • Collings D, Emons AMC (1999) Microtubule and actin filament organization during acentral divisions in potato suspension culture cells. Protoplasma 207: 156–168

    Article  Google Scholar 

  • Cook D, Dreyer D, Bonnet D, Howell M, Nony E, VandenBosch K (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105: 1473–1478

    Article  PubMed  CAS  Google Scholar 

  • de Ruijter NCA, Emons AMC (1993) Immunodetection of spectrin antigens in plant cells. Cell Biol Int 17: 169–182

    Article  Google Scholar 

  • de Ruijter NCA, Emons AMC (1999) Actin-binding proteins in plant cells. Plant Biology 1: 26–35

    Article  Google Scholar 

  • de Ruijter NCA, Bisseling T, Emons AMC (1999) Rhizobium Nod-factors induce an increase in subapical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol Plant Microbe Interact 12: 829–832

    Google Scholar 

  • de Ruijter NCA, Rook MB, Bisseling T, Emons AMC (1998) Lipochito-oligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the tip. Plant J 13: 341–350

    Article  Google Scholar 

  • de Win AH, Pierson ES, Derksen J (1999) Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 76: 1648–1658

    Article  PubMed  Google Scholar 

  • Darnowski DW, Valenta R, Parthasarathy MV (1996) Identification and distribution of profilin in tomato (Lycopersicon esculentum Mill.). Planta 198: 158–161

    Article  CAS  Google Scholar 

  • Derksen J, Emons AMC (1990) Microtubules in tip growth systems. In: Heath IB (Ed) Tip growth in plant and fungal cells. Academic Press, pp 147–181

    Google Scholar 

  • Derksen J, Rutten T, Van Amstel T, de Win A, Doris F, Steer M (1995) Regulation of pollen tube growth. Acta Bot Neerl 44: 93–119

    Google Scholar 

  • Dicheva N, Irvine RF (1995) Phospholipid signalling. Cell 80: 269–278

    Article  Google Scholar 

  • Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts, K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120: 2465–2474

    CAS  Google Scholar 

  • Doyle T, Botstein D (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci USA 93: 3886–3891

    Article  PubMed  CAS  Google Scholar 

  • Drobak BK, Watkins PAC, Valenta R, Dove SK, Lloyd CW, Staiger CJ (1994) Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profilin. Plant J 6: 389–400

    Article  Google Scholar 

  • Edwards KA, Demsky M, Montague RA, Weymouth N, Kiehart DP (1997) GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev Biol 191: 103–117

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 1–20

    Article  Google Scholar 

  • Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod-factors. Science 256: 998–1000

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC (1987) The cytoskeleton and secretory vesicles in root hairs of Equisetum and Limnobium and cytoplasmic streaming in root hairs of Equisetum. Ann Bot 60: 625–632

    Google Scholar 

  • Emons AMC (1989) Helicoidal microfibril deposition in a tip-growing cell and microtubule alignment during tip morphogenesis: a dry-cleaving and freeze-substitution study. Can J of Botany 67: 2401–2408

    Article  Google Scholar 

  • Emons AMC, Derksen JWM (1986) Microfibrils, microtubules and microfilaments of the trichoblast of Equisetum hyemale. Acta Bot Neerl 35: 311–320

    Google Scholar 

  • Emons AMC, Pierson ES, Derksen JWM (1991) Cytoskeleton and intracellular movement in plant cells. In: PN Cheremisinoff and LM Ferrante (Eds) Biotechnology Current Progress 1, Technomic Publishing Company Inc., Lancaster UK. pp 311–335

    Google Scholar 

  • Felle HH, Kondorosi É, Kondorosi A, Schultze M (1995) Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differently sensitive to structural modifications of the lipochito-oligosaccharide. Plant J 7: 939–947

    Article  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1996) Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochito-oligosaccharide signals. Plant J 10: 295–301

    Article  CAS  Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1998) The role of ion fluxes in Nodfactor signalling in Medicago sativa. Plant J 13: 445–463

    Article  Google Scholar 

  • Foissner I, Lichtscheidl IK, Wasteneys GO (1996) Actin-based vesicle dynamics and exocytosis during wound wall formation in characean internodal cells. Cell Motil Cytoskeleton 35: 35–48

    Article  PubMed  CAS  Google Scholar 

  • Galway ME, Heckman JW Jr, Schiefelbein JW (1997) Growth and ultrastructure of Arabidopsis root hairs: the rhd mutation alters vacuole enlargement and tip growth. Planta 201: 209–218

    Article  PubMed  CAS  Google Scholar 

  • Gehring CA, Irving HR, Kabbara AA, Parish RW, Boukli NM, Broughton WJ (1997) Rapid, plateau-like increases in intracellular free calcium are associated with Nodfactor-induced root-hair deformation. Mol Plant Microbe Interact 10: 791–802

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD (1992) The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3: 1015–1024

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD (1991) Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science 251: 1231–1233

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD (1990) The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 247: 1575–1578

    Article  PubMed  CAS  Google Scholar 

  • Gungabissoon RA, Jiang C-J, Drt bak BK, Maciver SK, Hussey PJ (1998) Interaction of maize actin-depolymerizing factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16: 689–696

    Article  CAS  Google Scholar 

  • Hartwig JH, Kwiatkowski DJ (1991) Actin-binding proteins. Curr Opin Cell Biol 3: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, van Kammen A, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105: 787–797

    PubMed  CAS  Google Scholar 

  • Heidstra R, Nilsen G, Martinez-Abarca F, van Kammen A, Bisseling T (1997a) Nod-factorinduced expression of leghemoglobin to study the mechanism of NH4NO3 inhibition on root hair deformation. Mol Plant Microbe Interact 10: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Heidstra R, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T (1997b) Ethylene provides positional information on cortical cell division but is not involved in Nod-factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124: 1781–1787

    PubMed  CAS  Google Scholar 

  • Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Prome JC, van Kammen A, Bisseling T (1993) Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 4: 727–733

    Article  PubMed  CAS  Google Scholar 

  • Huang S, McDowell JM, Weise MJ, Meagher RB (1996) The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol 111: 115–126

    Article  PubMed  CAS  Google Scholar 

  • Iwanami Y (1956) Protoplasmic movement in pollen grains and pollen tubes. Phytomorphology 6: 288–295

    Google Scholar 

  • Jiang C-J, Weeds AG, Hussey PJ (1997a) The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate in the nucleus with actin. Plant J 12: 1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Jiang C-J, Weeds AG, Khan S, Hussey PJ (1997b) F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor ( ZmADF ). Proc Natl Acad Sci USA 94: 9973–9978

    Article  PubMed  CAS  Google Scholar 

  • Journet EP, Pichon M, Dedieu A, de Billy F, Truchet G, Barker DG (1994) Rhizobium meliloti Nod-factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant J 6: 241–249

    Google Scholar 

  • Kaminsky SGW, Heath IB (1995) Integrin and spectrin homologues and cytoplasm-wall adhesion in tip growth. J Cell Sci 108: 849–856

    Google Scholar 

  • Kamiya N (1981) Physical and chemical basis of cytoplasmic streaming. Ann Rev Plant Physiol 32: 205–236

    Article  CAS  Google Scholar 

  • Kijne J (1992) The Rhizobium infection process. In: G Stacey, RH Burris, HJ Evans (Eds) Biological Nitrogen Fixation. Chapman and Hall, New York. pp 349–398

    Google Scholar 

  • Kim SR, Kim Y, An G (1993) Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol 21: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Kurkdjian AC (1995) Role of differentiation of root epidermal cells in Nod-factor (from Rhizobium meliloti)-induced root hair depolarization of Medicago sativa. Plant Physiol 107: 783–790

    PubMed  CAS  Google Scholar 

  • Lancelle SA and Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization in Nicotiana pollen tubes. Protoplasma 165: 167–172

    Article  CAS  Google Scholar 

  • Lichtscheidl IK, Url WG (1987) Investigation of the protoplasm of Allium cepa inner epidermal cells using ultraviolet microscopy. Eur J Cell Biol 43: 93–97

    Google Scholar 

  • Lichtscheidl IK, Weiss DG (1988) Visualization of submicroscopic structures in the cytoplasm of Allium cepa inner epidermal cells by video-enhanced contrast light microscopy. Eur J Cell Biol 46: 376–382

    Google Scholar 

  • Lippincott-Schwartz (1998) Cytoskeletal proteins and Golgi dynamics. Curr Opin Cell Biol 10: 52–59

    Article  PubMed  CAS  Google Scholar 

  • Lopez I, Anthony RG, Maciver SK, Jiang CJ, Khan S, Weeds AG, Hussey PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci USA 93: 7415–7420

    Article  PubMed  CAS  Google Scholar 

  • Maciver SK, Pope BJ, Whytock S, Weeds AG (1998) The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin. Eur J Biochem 256: 388–397

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW, Kim M (1998) Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol Biol 36: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Miki M, Barden JA, dos Remedios CG, Phillips L, Hambly BD (1987) Interaction of phalloidin with chemically modified actin. Eur J Biochem 165: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17: 141–154

    Article  CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips. J Exp Bot 48: 1881–1896

    CAS  Google Scholar 

  • Mittermann I, Swoboda I, Pierson E, Eller N, Kraft D, Valenta R, Heberle-Bors E (1995) Molecular cloning and characterization of profilin from tobacco (Nicotiana tabacum): increased profilin expression during pollen maturation. Plant Mol Biol 27: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7: 869–885

    Article  PubMed  CAS  Google Scholar 

  • Neujahr R, Heizer C, Albrecht R, Ecke M, Schwartz JM, Weber I, Gerisch G (1997) Three-dimensional patterns and redistribution of myosin II and actin in mitotic Dictyostelium cells. J Cell Biol 139: 1793–1804

    Article  PubMed  CAS  Google Scholar 

  • Nishida E, Iida K, Yonezawa N, Koyasu S, Yahara I, Sakai H (1987) Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA 84: 5262–5266

    Article  PubMed  CAS  Google Scholar 

  • Pang KM, Lee E, Knecht DA (1998) Use of a fusion protein between GFP and an actinbinding domain to visualize transient filamentous-actin structures. Curr Biol 8: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Pingret JL, Journet EP, Barker DG (1998) Rhizobium nod-factor signalling. Evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–672

    Article  PubMed  CAS  Google Scholar 

  • Puius YA, Mahoney NM, Almo SC (1998) The modular structure of actin-regulatory proteins. Curr Opin Cell Biol 10: 23–34

    Article  PubMed  CAS  Google Scholar 

  • Ressad F, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D, Carlier MF (1998) Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and Factins. Comparison of plant and human ADFs and effect of phosphorylation. J Biol Chem 273: 20894–20902

    Google Scholar 

  • Ridge RW (1988) Freeze-substitution improves the ultrastructural preservation of legume root hairs. Botanical Magazine Tokyo 101: 427–441

    Article  Google Scholar 

  • Roberts K (1994) The plant extracellular matrix: in a new expansive mood. Current Opinion in Cell Biology 6: 688–694.

    Article  PubMed  CAS  Google Scholar 

  • Rozycka MD, Khan S, Lopez I, Greenland AJ, Hussey PJ (1995) A Zea mays pollen cDNA encoding a putative actin-depolymerizing factor. Plant Physiol 107: 1011–1012

    Article  PubMed  CAS  Google Scholar 

  • Ruhlandt G, Lange U, Grolig F (1994) Profilins purified from higher plants bind to actin from cardiac muscle and to actin from a green alga. Plant Cell Physiol 35: 849–854

    PubMed  CAS  Google Scholar 

  • Schnepf E (1986) Cellular polarity. Annu Rev Plant Physiol 37: 23–47

    Article  CAS  Google Scholar 

  • Seagull RW, Heath IB (1979) The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol 20: 184–188

    PubMed  CAS  Google Scholar 

  • Sherrier DJ, Vandenbosch KA (1994) Secretion of cell wall polysaccharides in Vicia root hairs. Plant J 5: 185–195

    Article  CAS  Google Scholar 

  • Sohn RH, Goldschmidt-Clermont PJ (1994) Profilin: at the crossroads of signal transduction and the actin cytoskeleton. Bioessays 16: 465–472

    Article  PubMed  CAS  Google Scholar 

  • Sonobe S, Shibaoka H (1989) Cortical fine actin filaments in higher plant cells visualized by rhodamine phalloidin after pre-treatment with m-maleimidobenzoyl Nhydroxysuccinimide ester. Protoplasma 148: 80–86

    Article  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR, Zonia LE (1997) Profilin and actin-depolymerizing factor: modulators of actin organization in plants. TIPS 2: 275–281

    Google Scholar 

  • Staiger CJ, Goodbody KC, Hussey PJ, Valenta R, Drobak BK, Lloyd CW (1993) The profilin multigene family of maize: differential expression of three isoforms. Plant J 4: 631–641

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Yuan M, Valenta R, Shaw PJ, Warn RM, Lloyd CW (1994) Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol 4: 215–219

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199: 83–92

    Article  CAS  Google Scholar 

  • Tominaga M, Sonobe S, Shimmen T (1998) Mechanism of inhibition of cytoplasmic streaming by auxin in root hair cells of Hydrocharis. Plant Cell Physiol 39: 1342–1349

    CAS  Google Scholar 

  • Valenta R, Duchene M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253: 557–560

    Article  PubMed  CAS  Google Scholar 

  • Valster AH, Hepler PK (1997) Caffeine inhibition of cytokinesis: Effect on the phragmoplast cytoskeleton in living Tradescantia stamen hair cells. Protoplasma 196: 155–166

    Article  CAS  Google Scholar 

  • Valster AH, Pierson ES, Valenta R, Hepler PK, Emons AMC (1997) Probing the plant actin cytoskeleton during cytokinesis and interphase by profilin microinjection. Plant Cell 9: 1815–1824

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton 36: 323–338

    Article  PubMed  CAS  Google Scholar 

  • Von Witsch M, Baluska F, Staiger CJ, Volkmann D (1998) Profilin is associated with the plasma membrane in microspores and pollen. Eur J Cell Biol 77: 303–312

    Article  Google Scholar 

  • Welch MD, Mallavarapu A, Rosenblatt J, Mitchison TJ (1997) Actin dynamics in vivo. Curr Opin Cell Biol 9: 54–61

    Article  PubMed  CAS  Google Scholar 

  • Westphal M, Jungbluth A, Heidecker M, Muhlbauer B, Heizer C, Schwartz JM, Marriott G, Gerisch G (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol 7: 176–183

    Article  PubMed  CAS  Google Scholar 

  • Wieland T, Faulstich H (1978) Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit Rev Biochem 5: 185–260

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa N, Nishida E, lida K, Yahara I, Sakai H (1990) Inhibition of the interactions of cofilin, destrin and deoxyribonuclease-I with actin by phosphoinositides. J Biol Chem 265: 8382–8386

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Esseling, J., de Ruijter, N., Emons, A.M.C. (2000). The Root Hair Actin Cytoskeleton as Backbone, Highway, Morphogenetic Instrument and Target for Signalling. In: Ridge, R.W., Emons, A.M.C. (eds) Root Hairs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68370-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68370-4_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68372-8

  • Online ISBN: 978-4-431-68370-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics