Skip to main content

The Involvement of Root Hairs in Mycorrhizal Associations

  • Chapter
Root Hairs

Abstract

The involvement of root hairs in the establishment of the Rhizobium-legume symbiosis is well known although the root hair is by no means the only point of entry of the bacteria into the plant root. A number of legumes are invaded by the so-called “crack entry” mode of penetration (Sprent 1989) whereby rhizobia enter the root either between epidermal cells or through breaks made through the root cortex by elongating lateral roots. In root hair entry, rhizobia dock on the root hairs, which deform in response to secreted Nod factors, and then the rhizobia enter the curled root hair by means of an infection thread (see Chapter 15 this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baon JB, Smith SS, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157: 97–105

    Google Scholar 

  • Baon JB, Smith SS, Alston AM (1994) Growth response and phosphorus uptake of rye with long and short root hairs: Interactions with mycorrhizal infection. Plant Soil 167: 247–254

    Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33: 713–716

    Article  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (Eds) Endomycorrhizae. Academic Press, New York London, pp 373–389

    Google Scholar 

  • Béguiristain T, Lapeyrie F (1997) Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted hypaphorine controls root hair development. New Phytol 136: 525–532

    Article  Google Scholar 

  • Blee KA, Anderson AJ (1996) Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenk & Smith. Plant Physiol 110: 675–688

    PubMed  CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Tansley Review No. 82. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130: 3–21

    Google Scholar 

  • Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CL, Bagyaraj DJ. (Eds) VA mycorrhiza; CRC Press Inc, Boca Raton pp 5–33

    Google Scholar 

  • Bonfante-Fasolo P (1988) The role of the cell wall as a signal in mycorrhizal associations. NATO ISI Ser H17 pp. 219–235

    Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62: 2128–2134

    Article  Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1985) A developmental study of the early stages in vesicular-arbuscular mycorrhiza formation. Can J Bot 63: 184–194

    Article  Google Scholar 

  • Chaw, S-M, Zharkikh, A, Sung, H-M, Lau T-C, and Li W-H (1997) Molecular phylogeny of extent gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14: 56–68

    PubMed  CAS  Google Scholar 

  • Chilvers MT, Daft MFJ (1981) Mycorrhizas of the Liliiflorae. II. Mycorrhiza formation and incidence of root hairs in field grown Narcissus L., Tulipa L., and Crocus L. cultivars. New Phytol 89: 247–261

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of nonmycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum L.) and fava bean ( Vicia faba L. ). Plant Sci 60: 215–222

    Google Scholar 

  • Duckett JG, Read DJ (1995) Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associations in vitro. New Phytol 129: 429–447

    Article  Google Scholar 

  • Duckett JG, Renzaglia KS, Pell K (1991) A light and electron microscope study of rhizoidascomycete associations and flagelliform axes in British hepatics with observations on the effects of the fungi on host morphology. New Phytol 118: 233–258

    Article  Google Scholar 

  • Duff RI, Nickrent DL (1999) Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Amer J Bot 86: 372–386

    Article  CAS  Google Scholar 

  • Edwards, DS (1986) Aglaophyton major, a non-vascular land-plant from the Devonian Rhynie chert. Bot J Linn Soc 93: 173–204

    Article  Google Scholar 

  • Estaún V, Calvet C, Hayman DS (1987) Influence of plant genotype on mycorrhizal infection: Response of three pea cultivars. Plant Soil 103: 295–298

    Google Scholar 

  • Fries N, Serck-Hannssen K, Hall Dimberg L, Theander O (1987) Abietic acid an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus ( Boletaceae ). Exp Mycol 11: 360–363

    Google Scholar 

  • Gallaud I (1905) Etudes sur les mycorrhizes endotrophes, chapters 1 5, Revue Gén Bot 17:5–48 479–500

    Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112: 383–388.

    Article  Google Scholar 

  • Garriock ML, Peterson RL, Ackerley CA (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus, Glomus versiforme. New Phytol 112: 85–92.

    Google Scholar 

  • Giollant M, Guillot J, Damez M, Dusser M, Didier P, Didier E (1993) Characterization of a lectin from Lactarius deterrimus. Research on the possible involvement of the fungal lectin in recognition between mushroom and spruce during the early stages of mycorrhizae formation. Plant Physiol 101: 513–522

    Google Scholar 

  • Gogala.N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experentia 47: 331–340

    Google Scholar 

  • Harley JL (1969) The biology of mycorrhiza. Second edition. Plant Science Monograph, Polunin N (Ed) Leonard Hill Books Publishers, London. pp 242–269.

    Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol-Plant Microbe Interact 6: 643–654

    Article  CAS  Google Scholar 

  • Hebe G, Hager A, Salzer P (1999) Initial signalling processes induced by elicitors of ectomycorrhiza-forming fungi in spruce cells can also be triggered by G-proteinactivating mastoparan and protein phosphatase-inhibiting cantharidin. Planta 207: 418–425

    Article  CAS  Google Scholar 

  • Hildebrand AA, Koch LW (1936) A microscopical study of infection of the roots of strawberry and tobacco seedlings by micro-organisms of the soil. Can J. Res 14: 11–25

    Google Scholar 

  • Hirsch AM (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. OUT Opin Plant Biol 2: 320–326

    Article  CAS  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis. Fungal Genet Biol 23: 205–212

    Google Scholar 

  • Holley JD, Peterson RL (1979) Development of a vesicular-arbuscular mycorrhiza in bean roots. Can J Bot 57: 1960–1978

    Article  Google Scholar 

  • Horan DP, Chilvers GA (1990) Chemotropism: the key to ectomycorrhizal formation? New Phytol 116: 297–301

    Article  CAS  Google Scholar 

  • Jacquelinet-Jeanmougin S, Gianinazzi-Pearson V (1983) Endomycorrhizas in the Gentianaceae. I. The fungi associated with Gentiana lutea L. New Phytol 95: 663–666

    Google Scholar 

  • Jacobs PF, Peterson RL, Massicotte HB (1989) Altered fungal morphogenesis during early stages of ectomycorrhiza formation in Eucalyptus pilularis. Scanning Microsc 3: 249–255

    Google Scholar 

  • Jones FR (1924) A mycorrhizal fungus in the roots of legumes and some other plants. J Agric Res 24: 459–470

    Google Scholar 

  • Lapeyrie F, Lei J, Malajczuk N, Dexheimer J (1989) Ultrastructural and biochemical changes at the pre-infection stage of mycorrhizal formation by two isolates of Pisolithus tinctorius. Ann Sci For 46s: 754s - 757s

    Article  Google Scholar 

  • Lei J, Wong KKY, Piché Y (1991) Extracellular concanavalin A-binding sites during early interactions between Pinus banksiana and two closely related genotypes of the ectomycorrhizal basidiomycete Laccaria bicolor. Mycol Res 95: 357–363

    Article  CAS  Google Scholar 

  • Leu SW, Chang DCN (1995) Mycorrhizal infection and morphology of lily inoculated with vesicular-arbuscular mycorrhizal fungi, Gigaspora gigantea (Nic. Gerd.) Gerd. Trappe or Glomus etunicatum Becker Gerdemann. Res Report Agric Inst Univ Taiwan 35: 285–293 (In Chinese)

    Google Scholar 

  • Ligrone R, Lopes C (1989) Cytology and development of a mycorrhiza-like infection in the gametophyte of Conocephalum conicum (L.) Dum. ( Marchantiales, Hepatophyta). New Phytol 111: 423–434.

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91: 467–482

    Google Scholar 

  • Manjunath A, Habte M (1991) Root morphological characteristics of host species having distinct mycorrhizal dependency. Can J Bot 69: 671–676

    Article  Google Scholar 

  • Martin F, Tagu D (1995) Ectomycorrhiza development: a molecular perspective. In: Vanna A, Hock B (Eds.) Mycorrhiza. Springer Verlag Berlin Heidelberg. pp. 29–58.

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (1987) Scanning electron microscopy of ectomycorrhizae: potential and limitations. Scanning Microsc 1: 1439–1454.

    Google Scholar 

  • Massicotte HB, Peterson RL, Melville LH (1989) Ontogeny of Alnus rubra-Alpova diplophloeus ectomycorrhizae. I. Light and scanning electron microscopy. Can J Bot 67: 191–200

    Google Scholar 

  • Massicotte HB, Peterson RL, Ackerley CA, Melville LH (1990) Structure and ontogeny of Betula alleghaniensis-Pisolithus tinctorius ectomycorrhizae. Can J Bot 68: 579–593

    Article  Google Scholar 

  • Mauseth JD (1995) Botany—An Introduction to Plant Biology. Second edition. Saunders College Publishing, Philadelphia

    Google Scholar 

  • McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100: 341–351

    Article  PubMed  CAS  Google Scholar 

  • Mercy MA, Shivashankar G, Bagyaraj DJ (1990) Mycorrhizal colonization in cowpea is host dependent and heritable. Plant Soil 121: 292–294

    Article  Google Scholar 

  • Miller DD, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton-plasma membrane-cell wall continuum in root hair tips. J Exp Bot 48: 1881–1896

    CAS  Google Scholar 

  • Miller RM, Smith CI, Jastrow JD, Bever JD (1999) Mycorrhizal status of the genus Carex ( Cyperaceae ). Amer J Bot 86: 547–553

    Google Scholar 

  • Nehls U, Béguiristain T, Ditengou F, Lapeyrie F, Martin F (1998) The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Planta 207: 296–302

    Article  PubMed  CAS  Google Scholar 

  • Nicolson TH (1959) Mycorrhiza in the Gramineae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Brit Mycol Soc 42: 421–438

    Article  Google Scholar 

  • Nylund JE, Unestam T (1982) Structure and physiology of ectomycorrhiza. I. The process of mycorrhiza formation in Norway spruce in vitro. New Phytol 91: 65–79

    Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: Specialized tubular cells extending root surfaces. Bot Rev 62: 1–40

    Google Scholar 

  • Piché Y, Peterson RL, Massicotte HB (1988) Host-fungus interactions in ectomycorrhizae. Cell to cell signals in plant, animal and microbial symbiosis. NATO ISI Ser H17: 55–71

    Google Scholar 

  • Pingret J-I, Journet E-P, Barker DG (1998) Rhizobium Nod factor signalling: Evidence for a G protein-mediated transduction mechanism. Plant Cell 10: 659–671

    Google Scholar 

  • Prat H (1926) Etude des mycorrhizes du “Taxus baccata”. Ann Sci Nat (Bot Biol Vég) 8: 141–163

    Google Scholar 

  • Remy W, Taylor TN, Haas H, Kerp H (1994) Four hundred-million-year-old vesiculararbuscular mycorrhizae. Proc Natl Acad Sci USA 91: 11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Rice KA, Donoghue MJ, Olmstead RG (1997) Analyzing large data sets: rbcL 500 revisited. System Biol 46: 554–563

    Article  CAS  Google Scholar 

  • Salzer P, Hebe G, Reigh A, Zitterell-Haid B, Stransky H, Gaschler K, Hager A (1996) Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell enzymes. Planta 198: 118–126

    Article  CAS  Google Scholar 

  • Schmid E, Oberwinkler F (1993) Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron microscopy. New Phytol 124: 69–81

    Article  Google Scholar 

  • Schweiger PF, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131: 247–254

    Article  Google Scholar 

  • Smith FA, Smith SE (1997) Tansley Review No. 96. Structural diversity in (vesicular) arbuscular mycorrhizal symbioses. New Phytol 137: 373–388

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Second edition. Academic Press, Harcourt Brace Company, Publishers, San Diego

    Google Scholar 

  • Sprent JI (1989) Tansley Review No. 15. Which steps are essential for the formation of functional legume nodules? New Phytol 111: 129–153

    Article  Google Scholar 

  • St. John TV (1980) Root size, root hairs and mycorrhizal infection: A re-examination of Baylis’ hypothesis with tropical trees. New Phytol 84: 483–487

    Google Scholar 

  • Tagu D, Martin D (1996) Molecular analysis of cell wall proteins expressed during the early steps of ectomycorrhiza development. New Phytol 133: 73–85

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant Physiology. Second edition. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts

    Google Scholar 

  • Thomson J, Melville LH, Peterson RL (1989) Interaction between the ectomycorrhizal fungus Pisolithus tinctorius and root hairs of Picea mariana ( Pinaceae ). Amer J Bot 76: 632–636

    Google Scholar 

  • Tiemann C, Demuth K, Weber HC (1994) Zur VA-Mycorrhiza von Gelsenium rankinii and G. sempervirens ( Loganaceae ). Beiträge Biol Pflanz 68: 311–321

    Google Scholar 

  • Vierheilig H, Alt-Hug M, Engel-Streitwolf R, Mäder P, Wiemken A (1998) Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment-membrane system. Plant Soil 203: 137–144

    Article  CAS  Google Scholar 

  • Weber HC, Krämer M (1994) VA-Mycorrhiza bei Menyanthaceae. Beiträge Biol Pflanz 68: 351–362

    Google Scholar 

  • Weber HC, Klahr A, Marron-Heimbuch M (1995) Anatomical structures of the VA mycorrhiza in the Apocynaceae ( Gentianales ). Bot Acta 108: 525–534

    Google Scholar 

  • Weiss M, Schmidt J, Neumann D, Wray V, Christ R, Strack D (1999) Phenylpropanoids in mycorrhizas of the Pinaceae. Planta 208: 491–502

    Article  CAS  Google Scholar 

  • Wessels JG (1993) Tansley Review No. 45. Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123: 397–413

    Article  CAS  Google Scholar 

  • Whitbread F, McGonigle TP, Peterson RL (1995) Vesicular-arbuscular mycorrhizal associations of American ginseng ( Panax quinquefolius) in commercial production. Can J Bot 74: 1104–1112

    Google Scholar 

  • Widden P (1996) The morphology of vesicular-arbuscular mycorrhizae in Clintonia borealis and Medeola virginiana. Can J Bot 74: 679–685

    Article  Google Scholar 

  • Winter AG (1951) Untersuchungen über die Verbreitung und Bedeutung der Mykorrhiza bei kultivierten Gramineen und einigen anderen landwirtschaftlichen Nutzpflanzen. Phytopath Zeit 17: 421–432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Guinel, F.C., Hirsch, A.M. (2000). The Involvement of Root Hairs in Mycorrhizal Associations. In: Ridge, R.W., Emons, A.M.C. (eds) Root Hairs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68370-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68370-4_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68372-8

  • Online ISBN: 978-4-431-68370-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics