Skip to main content

Role of Alpha-adrenoceptor Activity in Regulation of Coronary Blood Flow During Myocardial Ischemia

  • Chapter
Regulation of Coronary Blood Flow

Summary

We discuss the beneficial roles of alpha-adreno-ceptor activity on the pathogenesis of ischemic heart disease. The major effect of alpha-adrenoceptor stimulation in the coronary arteries was thought to be vasoconstriction, which may restrict myocardial oxygen supply and worsen myocardial ischemia. However, this is not necessarily true, because (1) alpha1-adrenoceptor stimulation favorably maintains endocardial coronary flow at the expense of epicardial flow reduction, (2) alpha1-adrenoceptor stimulation enhances the release of adenosine, and alpha2-adrenoceptor stimulation increases the release of EDRF and histamine, and (3) alpha2-adrenoceptor stimulation increases the sensitivity of the effects of adenosine. These beneficial effects of alpha-adrenoceptor stimulation may conversely attenuate the severity of myocardial ischemia and reperfusion injuries. Further clinical studies are necessary for better understanding of the roles of alpha-adrenoceptor activity in coronary flow regulation and myocardial function in human ischemic hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wollenberger A, Shaab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207:88–89.

    Article  PubMed  CAS  Google Scholar 

  2. Muntz KH, Hapler HK, Boulas JH, Willerson JT, Buja ML (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Physiol 114:64–78.

    CAS  Google Scholar 

  3. Schömig A, Dart AM, Dietz R, Mayer E, Kübier W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701.

    Article  PubMed  Google Scholar 

  4. Dart AM, Schömig A, Dietz R, Mayer E, Kübier W (1984) Release of endogenous catecholamine in the ischemie myocardium of the rat. Part B: Effects of sympathetic nerve stimulation. Circ Res 55:702–706.

    Article  PubMed  CAS  Google Scholar 

  5. Zuberbuhler RC, Bohr DF (1965) Responses of coronary smooth muscle to catecholamines. Circ Res 16:431–440.

    Article  PubMed  CAS  Google Scholar 

  6. Murray PA, Vatner SF (1979) α-Adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654–660.

    Article  PubMed  CAS  Google Scholar 

  7. Vatner SF (1983) Alpha-adrenergic regulation of the coronary circulation in the conscious dog. Am J Cardiol 52:15A–21A.

    Article  PubMed  CAS  Google Scholar 

  8. Angus JA, Cocks TM, Satoh K (1986) The a adrenoceptors on endothelial cells. Fed Proc 45:2355–2359.

    PubMed  CAS  Google Scholar 

  9. Camazine B, Shannon RP, Guerrero JL, Graham RM, Powell WJ Jr (1988) Neurogenic histaminergic vasodilation in canine skeletal muscle: Mediation by α2-adrenoceptor stimulation. Circ Res 62:871–883.

    Article  PubMed  CAS  Google Scholar 

  10. Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M., Kamada T (1987) α1-Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 60:631–639.

    Article  PubMed  CAS  Google Scholar 

  11. Hori M, Kitakaze M, Tamai J, Koretsune Y, Iwai K, Iwakura K, Kagiya T, Kitabatake A, Inoue M, and Kamada T (1988) α2-Adrenoceptor activity exerts dual control of coronary blood flow in canine coronary artery. Am J Physiol 255:H250–H260.

    PubMed  CAS  Google Scholar 

  12. Hori M, Kitakaze M, Tamai J, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) α2-Adrenoceptor stimulation can augment coronary vasodilation maximally induced by adenosine in dogs. Am J Physiol 257:H132–H140.

    PubMed  CAS  Google Scholar 

  13. Kitakaze M, Hori M, Gotoh K, Sato H, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) Beneficial effects of α2-adrenoceptor activity on ischemic myocardium during coronary hypoperfusion in dogs. Circ Res 65:1632–1645.

    Article  PubMed  CAS  Google Scholar 

  14. Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: Mechanism and metabolic requirements. Cir Res 60:194–205.

    Article  Google Scholar 

  15. Corr PB, Gillis RA (1978) Autonomie neural influences on the dysarrhythmia resulting from myocardial infarction. Circ Res 43:1–9.

    Article  PubMed  CAS  Google Scholar 

  16. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Eur Heart J 5:960–973.

    PubMed  CAS  Google Scholar 

  17. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306.

    Article  PubMed  CAS  Google Scholar 

  18. Gauduel Y, Karagueuzian HS, Leiris JD (1979) Deleterious effects of endogenous catecholamines on hypoxic myocardial cells following reoxygenation. J Mol Cell Cardiol 11:717–731.

    Article  PubMed  CAS  Google Scholar 

  19. Shaab L, Wollenberger A, Haase M, Schiller U (1969) Noradrenalinabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie. Acta Biol Med Gem 22:135–143.

    Google Scholar 

  20. Schömig A, Kurz T, Richardt G, Schömig E (1988) Neuronal homoeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circ Res 63:214–226.

    Article  PubMed  Google Scholar 

  21. Kelley KO, Feigl EO (1978) Segmentai α-receptor-mediated vasoconstriction in the canine coronary circulation. Circ Res 43:908–917.

    Article  PubMed  CAS  Google Scholar 

  22. Chillian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction. Circ Res 64:376–388.

    Article  Google Scholar 

  23. Heusch G, Deussen A, Schipke J, Thämer V (1984) α1-and α2-Adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6:961–968.

    Article  PubMed  CAS  Google Scholar 

  24. Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250:H645–H653.

    PubMed  CAS  Google Scholar 

  25. Buffington CW, Feigl EO (1983) Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog. Circ Res 53:613–621.

    Article  PubMed  CAS  Google Scholar 

  26. Homey CJ, Graham RM (1985) Molecular characterization of adrenergic receptors. Circ Res 56:635–650.

    Article  Google Scholar 

  27. Endo T, Naka M, Hidaka H (1982) Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin. Biochem Biophy Res Comm 105:942–948.

    Article  CAS  Google Scholar 

  28. Nishikawa M, Hidaka H, Adelstein RS (1989) Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase C. The effect on action-activated MgATPase activity. J Biol Chem 258:14069–14072.

    Google Scholar 

  29. Nishikawa M, Sellers JR, Adelstein RS, Hidaka H (1984) Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem 259:8808–8814.

    PubMed  CAS  Google Scholar 

  30. Connonly TN, Limberd LE (1983) The influence of Na+ on the alpha-2 adrenergic receptor system of human platelet. A method for removal of extraplatelet Na+: Effect of Na+ removal on aggregation, secretion, and cAMP accumulation. J Biol Chem 258:3907–3912.

    Google Scholar 

  31. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  32. Horeyseck G, Janig W, Kirchner F, Thamer V (1976) Activation and inhibition of muscle and cutaneous postganglionic neurons to hindlimb during hypothalamically induced vasoconstriction and atropine-sensitive vasodilation. Pflügers Arch 361:231–240.

    Article  PubMed  CAS  Google Scholar 

  33. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813.

    Article  PubMed  CAS  Google Scholar 

  34. Nayler WG, Price JM, Lowe TE (1967) Inhibition of adenosine-induced coronary vasodilation. Cardiovasc Res 1:63–66.

    Article  PubMed  CAS  Google Scholar 

  35. Hori M, Tamai J, Kitakaze M, Iwakura K, Gotoh K, Iwai K, Koretsune Y, Kagiya T, Kitabatake A, Kamada T (1989) Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs. Am J Physiol 257:H244–H251.

    PubMed  CAS  Google Scholar 

  36. DeWitt DF, Wangler RD, Thompson CI, Sparks HV Jr (1983) Phasic release of adenosine during steady state metabolic stimulation in the isolated guinea pig heart. Circ Res 53:636–643.

    Article  PubMed  CAS  Google Scholar 

  37. Kitakaze M, Hori M, Iwakura K, Sato H, Gotoh K, Tada M (1989) Protein kinase C regulates production of adenosine in hypoxic myocytes of rats (abstract). Circulation 80:II498.

    Google Scholar 

  38. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15.

    Article  PubMed  CAS  Google Scholar 

  39. Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross J Jr (1988) Intracoronary α2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62:436–442.

    Article  PubMed  CAS  Google Scholar 

  40. Agarwal KC (1987) Adenosine and platelet function. In: Stefanovich V, Okayuz-Baklouti I (eds) Role of Adenosine in Cerebral Metabolism and Blood Flow. VNU Science Press, Utrechit pp. 107–124.

    Google Scholar 

  41. Agarwal KC, Zielinski BA, Maitra RS (1989) Significance of plasma adenosine in the antiplatelet activity of forskolin: Potentiation by dipyridamole and dilazep. Thromb Haemost 61:106–110.

    PubMed  CAS  Google Scholar 

  42. Nayler WG, Gordon M, Stephens DJ, Sturrdock JW (1985) The protective effect of prazosin on the ischemic and reperfused myocardium. J Mol Cell Cardiol 17:685–699.

    Article  PubMed  CAS  Google Scholar 

  43. Braunwald E, Kloner RA (1982) The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 60:1146–1149.

    Article  Google Scholar 

  44. Braunwald E, Kloner RA (1985) Myocardial reperfusion: A double-edged sword? J Clin Invest 76:1713–1719.

    Article  PubMed  CAS  Google Scholar 

  45. Kitakaze M, Hori M, Gotoh K, Sato H, Iwakura K, Goto K, Inoue M, Kitabatake A, Kamada T (1991) Beneficial effects of α1-adrenoceptor activity on myocardial stunning in dogs. Circ Res 68:1322–1339.

    Article  PubMed  CAS  Google Scholar 

  46. Kitakaze M, Takashima S, Sato H (1990) Stimulation of adenosine A1 and A2 receptors prevent myocardial stunning (abstract). Circulation 82(Suppl III):III37.

    Google Scholar 

  47. Brodeur RD, Storey C, Anderson PR, Cabrera BDF, Nunnally RL (1990) Effects of adenosine on functional recovery during reperfusion of the ischemic rabbit myocardium. Circulation 82(Suppl III):III289.

    Google Scholar 

  48. Taegtmeyer H, Roberts AFC, Raine AEG (1985) Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 6:864–870.

    Article  PubMed  CAS  Google Scholar 

  49. Ambrosio G, Jacobus WE, Becker LC (1986) Effect of ATP precursor administration on post-ischemic function and metabolism in isolated rabbits hearts (abstract). J Am Coll Cardiol 7:79A.

    Google Scholar 

  50. Nunnally RL, Hollis DP (1979) Adenosine triphosphate compartmentation in living hearts: A phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry 18:3642–3646.

    Article  PubMed  CAS  Google Scholar 

  51. Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart: A 31P-NMR magnetization transfer study. J Biol Chem 260:3512–3517.

    PubMed  CAS  Google Scholar 

  52. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987) Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961.

    Article  PubMed  CAS  Google Scholar 

  53. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Cir Res 60:700–707.

    Article  CAS  Google Scholar 

  54. Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695.

    Article  PubMed  CAS  Google Scholar 

  55. Kitakaze M, Weisfeldt ML, Marban E (1988) Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82:920–927.

    Article  PubMed  CAS  Google Scholar 

  56. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM (1990) Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied for the study ischemia and reperfusion. Circ Res 66:1255–1267.

    Article  PubMed  CAS  Google Scholar 

  57. Isenberg G, Cerbai E, Klockner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspective in adenosine research. Springer-Verlag, Berlin, pp 323–335.

    Chapter  Google Scholar 

  58. Cerbai E, Klockner U, Isenberg G (1988) Ca-antagonistic effects of adenosine in guinea pig atrial cells. Am J Physiol 255:H872–H878.

    PubMed  CAS  Google Scholar 

  59. Endo M, Blinks JR (1988) Actions of sympathomimetic anines on the Ca2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α and β adreoceptors. Circ Res 62:247–265.

    Article  Google Scholar 

  60. Sharma AD, Saffitz JE, Lee BI, Sobel BE, Corr PB (1983) Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. J Clin Invest 72:802–818.

    Article  PubMed  CAS  Google Scholar 

  61. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1986) Adenosine: A physiological modulator of Superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177.

    Article  Google Scholar 

  62. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: A endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770.

    Article  PubMed  CAS  Google Scholar 

  63. Cronstein BN (1990) Adenosine is an endogenous modulator of inflammation (abstract). Jpn J Pharmacol 52(Suppl II):57.

    Google Scholar 

  64. Kitakaze M, Hori M, Sato H, Takashima S, Inoue M, Kitabatake A, Kamada T (1991) Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res (in press).

    Google Scholar 

  65. Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R (1987) Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: Importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145.

    Article  PubMed  CAS  Google Scholar 

  66. Engler R (1987) Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc 46:2407–2412.

    PubMed  CAS  Google Scholar 

  67. Stahl LD, Weiss HR, Becker LC (1988) Myocardial oxygen consumption, oxygen supply/demand heterogeneity, and microvascular patency in regionally stunned myocardium. Circulation 77:865–872.

    Article  PubMed  CAS  Google Scholar 

  68. Hori M, Inoue M, Kitakaze M, Koretsune Y, Iwai K, Tamai J, Ito H, Kitabatake A, Sato T, Kamada T (1986) Role of adenosine in hyperemic response of coronary blood flow in microembolization. Am Physiol 250:H509–H518.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Hori, M., Kitakaze, M., Kitabatake, A., Kamada, T., Inoue, M. (1991). Role of Alpha-adrenoceptor Activity in Regulation of Coronary Blood Flow During Myocardial Ischemia. In: Inoue, M., Hori, M., Imai, S., Berne, R.M. (eds) Regulation of Coronary Blood Flow. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68367-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68367-4_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68369-8

  • Online ISBN: 978-4-431-68367-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics