Skip to main content

PET Measurement of Myocardial Blood Flow

  • Chapter
Regulation of Coronary Blood Flow

Abstract

Positron emission tomography (PET) has potentials for quantification of regional myocardial blood flow and metabolism in vivo. PET perfusion images can be obtained using N-13 ammonia, a generator-produced rubidium-82, and O-15 water. PET provides higher quality perfusion images than the widely used thallium-201 perfusion images. Therefore, the qualitative PET perfusion study can yield higher sensitivity and specificity for diagnosing coronary artery disease than the thallium-201 imaging. In addition, quantitative analysis of flow reserve by PET may further enhance the identification of a mild coronary perfusion abnormality. The tracers and techniques of PET perfusion imaging as well as the clinical value of PET perfusion study are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phelps ME, Hoffman EJ, Coleman RE, (1976) Tomographie images of blood pool and perfusion in brain and heart. J Nucl Med 17:603–612.

    PubMed  CAS  Google Scholar 

  2. Torizuka K, Yonekura Y, Tamaki N, (1985) Noninvasive evaluation of regional myocardial perfusion with positron emission computed tomography. Jpn Circ J 39:719–726.

    Article  Google Scholar 

  3. Schelbert HR, Schwaiger M (1986) PET studies of tjhe heart In: Phelps ME, Mazziotta J, Schellbert HR (eds) Positron tomography and autoradiography: Principles and applications for the brain and heart. Raven, New York, pp 581–661.

    Google Scholar 

  4. Schelbert HR, Phelps ME, Huang SC, (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272.

    Article  PubMed  CAS  Google Scholar 

  5. Krivokapich J, Smith GT, Huang SC, (1989) 13N-ammonia myocardial imaging at rest and with exercise in normal volunteers: Quantification of absolute myocardial perfusion wth dynamic positron emission tomography. Circulation 80:1328–1337.

    Article  PubMed  CAS  Google Scholar 

  6. Tamaki N, Yonekura Y, Senda M, (1985) Myocardial positron computed tomography with N-13 ammonia at rest and during exercise. Eur J Nucl Med 11:246–251.

    Article  PubMed  CAS  Google Scholar 

  7. Yonekura Y, Tamaki N, Senda M, (1987) Detection of coronary artery disease with 13N-ammonia and high-resolution positron emission computed tomography. Am Heart J 113:645–654.

    Article  PubMed  CAS  Google Scholar 

  8. Tamaki N, Yonekura Y, Senda M, (1988) Value and limitation of stress thallium-201 tomography: Comparison with N-13 ammonia perfusion positron tomography. J Nucl Med 29:1181–1188.

    PubMed  CAS  Google Scholar 

  9. Tamaki N, Yonekura Y, Yamashita K, (1989) Value of rest-stress myocardial positron tomography using N-13 ammonia for the preoperative prediction of reversible asynergy. J Nucl Med 30:1302–1310.

    PubMed  CAS  Google Scholar 

  10. Marshall RC, Tillisch JH, Phelps ME, (1983) Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 67:766–778.

    Article  PubMed  CAS  Google Scholar 

  11. Tillisch J, Brunken R, Marshall R, (1986) Reversibility of cardiac wall-motion abnormalities predicated by positron tomography. N Engl J Med 314:884–888.

    Article  PubMed  CAS  Google Scholar 

  12. Gould KL, Goldstein RA, Mullani NA, (1986) Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vaso-dilation: VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 7:775–789.

    Article  PubMed  CAS  Google Scholar 

  13. Denfield JE, Selwyn AP, Chierchia S, Myocardial ischemia during daily life: Its relation to symptom and heart rate changes Lancet 1983 (13) 1986.

    Google Scholar 

  14. Mullani NA, Godstein RA, Gould KL, (1983) Perfusion imaging with rubidium-82: I. Measurement of extraction and flow with external detectors. J Nucl Med 24:898–906.

    PubMed  CAS  Google Scholar 

  15. Goldstein RA, Mullani NA, Marani SK, (1983) Perfusion imaging with rubidium-82: II. Effects of pharmacologic interventions on flow and extraction. J Nucl Med 24:907–915.

    PubMed  CAS  Google Scholar 

  16. Schelbert HR, Wisenberg G, Phelps ME, (1982) Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vaso-dilation: VI. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49:1197–1207.

    Article  PubMed  CAS  Google Scholar 

  17. Bergmann SR, Fox KAA, Rand AL, (1984) Quantification of regional myocardial blood flow in vivo with H215O. Circulation 70:724–733.

    Article  PubMed  CAS  Google Scholar 

  18. Huang SC, Schwaiger M, Carson RE, (1985) Quantitative measurement of myocardial blood flow with oxygen-15 water and positron computed tomography: An assessment of potential and problems. J Nucl Med 26:616–625.

    PubMed  CAS  Google Scholar 

  19. Iida H, Kanno I, Takahashi A, (1988) Measurement of absolute myocardial blood flow with H215O and dynamic positron emission tomography. Circulation 78:104–115.

    Article  PubMed  CAS  Google Scholar 

  20. Stewart R, Schwaiger M, Molina E, (1991) Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 67:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  21. Go RT, Marwick TH, MacIntyre WJ (1990) A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905.

    PubMed  CAS  Google Scholar 

  22. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA (1977) Differentiation of transiently ischemie from infarcted myocardium by serial imaging after single dose of thallium-201. Circulation 55:294–302.

    Article  PubMed  CAS  Google Scholar 

  23. Liu P, Kiess MC, Okada RD, Block PC, Strauss HW, Pohost GM, Boucher CA (1985) The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia? Am Heart J 110:996–1001.

    Article  PubMed  CAS  Google Scholar 

  24. Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M, Konishi Y, Hirata K, Ban T, Konishi J (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64:860–865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Tamaki, N., Yonekura, Y., Konishi, J. (1991). PET Measurement of Myocardial Blood Flow. In: Inoue, M., Hori, M., Imai, S., Berne, R.M. (eds) Regulation of Coronary Blood Flow. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68367-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68367-4_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68369-8

  • Online ISBN: 978-4-431-68367-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics