Scintigraphy in the Diagnosis of Hepatocellular Carcinoma

  • Michael C. Kew
  • Joseph Levin


The introduction of hepatic scintigraphy in the late 1950s represented a major advance in the diagnosis of focal hepatic lesions because it became possible for the first time to obtain images of the liver with a noninvasive procedure. Several years were to elapse before alternative and perhaps better hepatic imaging modalities became available, and during this time radio-tracer scanning proved to be invaluable, both in the recognition of hepatocellular carcinoma and in the evaluation of patients with this tumor. Scintigraphy was used to confirm (or in some patients to establish) the presence of a “space-occupying lesion” in the liver, to provide a reasonably accurate assessment of the size, position, the extent of the tumor when resectability was being considered, and to determine the optimal site for percutaneous biopsy of the lesion.


Focal Nodular Hyperplasia Rose Bengal Iminodiacetic Acid Focal Hepatic Lesion Hepatic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kew MC, Dos Santos HA, Sherlock S (1971) Diagnosis of primary cancer of the liver. Br Med J 4:408–411PubMedCrossRefGoogle Scholar
  2. 2.
    Sharpstone P, Rake MO, Shilkin KB, Williams R (1972) The diagnosis of primary malignant tumors of the liver, Q J Med 41:99–110PubMedGoogle Scholar
  3. 3.
    Bieler EU, Meyer BJ, Jansen CR (1972) Liver scanning as a method of detecting primary liver cancer. Report on 100 cases (1972) Am J Roentgenol Radium Ther Nucl Med 115:709–716PubMedCrossRefGoogle Scholar
  4. 4.
    Levin J, Geddes EW, Kew MC (1974) Radionuclide scanning of the liver in primary hepatic cancer. An analysis of 202 cases. J Nucl Med 15:296–299PubMedGoogle Scholar
  5. 5.
    Fritz SL, Preston DF, Gallagher JH (1981) ROC analysis of diagnostic performance in liver scintigraphy. J Nucl Med 22:121–128PubMedGoogle Scholar
  6. 6.
    Drum DE (1982) Current status of hepatic scintiphotography for space-occupying disease. Sem Nucl Med 12:64–74CrossRefGoogle Scholar
  7. 7.
    Rothschild MA, Oratz M, Schreiber SS (1982) Comments on radionuclide hepatic scanning. Sem Liver Dis 2:29–40CrossRefGoogle Scholar
  8. 8.
    Zeman RK, Paushter DM, Schiebler ML, Choyke PL, Clark LR (1985) Hepatic imaging: current status. Radiol Clin N Am 23:473–487PubMedGoogle Scholar
  9. 9.
    Alderson PO, Adams DF, McNeil BJ, Sanders RC, Siegelman SS, Finberg HS, Hessel SJ, Abrams HL (1983) Computed tomography, ultrasound, and scintigraphy of the liver in patients with colon or breast carcinoma: A prospective comparison. Radiology 149:225–230PubMedGoogle Scholar
  10. 10.
    Strauss L, Bostel F, Clorius JH, Rapton E, Wellman H, Georgi P (1982) Single-photon emission computed tomography (SPECT) for assessment of hepatic lesions. J Nucl Med 23:1059–1065PubMedGoogle Scholar
  11. 11.
    Brendel AJ, Leccia F, Drouillard J, San Galli F, Eresne J, Wynchank S, Barat JL, Ducassou D (1984) Single photon emission computed tomography (SPECT), planar scintigraphy, and transmission computed tomography: A comparison of accuracy in diagnosing focal hepatic disease. Radiology 153:527–532PubMedGoogle Scholar
  12. 12.
    Breedis C, Young G (1949) Blood supply of neoplasms of the liver. Am J Pathol 30:969–985Google Scholar
  13. 13.
    Feeman LM, Mandell CH (1972) Dynamic vascular scintiphotography of the liver. Sem Nucl Med 2:133–138CrossRefGoogle Scholar
  14. 14.
    Stadalnik RC, DeNardo SJ, DeNardo GL, Raventos A (1975) Critical evaluation of hepatic scintiangiography for neoplasms of the liver. J Nucl Med 16: 595–601PubMedGoogle Scholar
  15. 15.
    Lubin E, Lewitus Z (1972) Blood pool scanning in investigating hepatic mass lesions. Sem Nucl Med 2:128–132CrossRefGoogle Scholar
  16. 16.
    Lee VW, Estabaya E, Shapiro JH (1980) Diagnosis of hepatoma by scintigraphy using multiple radionuclides. J Surg Oncol 15:133–138PubMedCrossRefGoogle Scholar
  17. 17.
    Ben-Porath M, Clayton G, Kaplan E (1967) Modification of a multi-isotope color scanner for multi-purpose scanning. J Nucl Med 8:411–425PubMedGoogle Scholar
  18. 18.
    Coakley AJ, Wraight EP (1980) Selenomethionine liver scanning in the diagnosis of hepatoma. Br J Radiol 53:538–543PubMedCrossRefGoogle Scholar
  19. 19.
    Eddleston ACWF, Rake MP, Pagaltsos AP, Osborn SB, Williams R (1971) 75-Se-selenomethionine in the scintiscan diagnosis of primary hepatocellular carcinoma. Gut 12:245–249PubMedCrossRefGoogle Scholar
  20. 20.
    Kew MC, Geddes EW, Levin J (1974) Falsenegative 75-Se-selenomethionine scans in primary liver cell cancer. J Nucl Med 15:234–236PubMedGoogle Scholar
  21. 21.
    Kaplan E, Domingo M (1973) 75-Se-selenomethionine in hepatic focal lesions. Sem Nucl Med 2:139–149Google Scholar
  22. 22.
    Lomas F, Dibos SE, Wager H (1972) Increased specificity of liver scanning with the use of 67-gallium citrate. N Engl J Med 286:1323–1329PubMedCrossRefGoogle Scholar
  23. 23.
    James O, Wood EJ, Sherlock S (1974) 67 Gallium scanning in the diagnosis of liver disease. Gut 15:404–410PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffer P (1980) Status of gallium-67 in tumor detection. J Nucl Med 21: 394–398PubMedGoogle Scholar
  25. 25.
    Levin J, Kew MC (1975) Gallium-67 citrate scanning in primary cancer of the liver: Diagnostic value in the presence of cirrhosis and relation to alpha-fetoprotein J Nucl Med 16:949–951PubMedGoogle Scholar
  26. 26.
    Waxman AD, Richmond R, Juttner H, Siemsen JK, Heffelinger MJ, Fink E (1980) Correlation of contrast angiography and histologic pattern with gallium uptake in primary liver cell carcinoma: Non-correlation with alpha-fetoprotein. J Nucl Med 21:324–327PubMedGoogle Scholar
  27. 27.
    Cannon JR, Long RF, Berens SV (1980) Uptake of 99m-technetium PIPIDA in pulmonary métastases from a hepatoma. Clin Nucl Med 5:22–24PubMedCrossRefGoogle Scholar
  28. 28.
    Ueno K, Haseda Y (1980) Concentration and clearance of 99m-technetium-pyridoxyilidene isoleucine by a hepatoma. Clin Nucl Med 5:196–199PubMedCrossRefGoogle Scholar
  29. 29.
    Utz JA, Lull RJ, Anderson JH, Lambrecht RW, Brown JM, Henry W (1980) Hepatoma visualization with 99m-technetium pyridoxilidene glutamate. J Nucl Med 21:747–749PubMedGoogle Scholar
  30. 30.
    Savitch I, Kew MC, Paterson A, Esser JD, Levin J (1983) Uptake of 99m-technetium di-isopropyl iminodiacetic acid by hepatocellular carcinoma. J Nucl Med 24:1119–1122PubMedGoogle Scholar
  31. 31.
    Yeh SH, Wang SJ, Chu LS (1981) Sensitivity of 99m-technetium HIDA liver scintigraphy for diagnosing hepatoma. J Nucl Med 22:86Google Scholar
  32. 32.
    Lee VW, O’Brien MJ, Devereux DF, Morris PM, Shapiro JH (1984) Hepatocellular carcinoma: Uptake of 99m-technetium IDA in primary tumor and metastasis. J Nucl Med 25: 57–61Google Scholar
  33. 33.
    Hasegawa Y, Nakano S, Ibuka K, Hashizume T, Sasaki Y, Imaoka S (1984) The importance of delayed imaging in the study of hepatoma with a new hepatobiliary agent. J Nucl Med 25:1122–1125PubMedGoogle Scholar
  34. 34.
    Vincent LM, Rho TH, McCartney WA, Momro MA (1984) Hepatic adenoma: Demonstration of a discordant uptake of 99m-technetium sulfur colloid and 99m-technetium DISIDA. Clin Nucl Med 9:415–416PubMedCrossRefGoogle Scholar
  35. 35.
    Strashun A, Goldsmith SJ (1981) Increased focal uptake of 99m-technetium IDA hapatobiliary agent by a liver metastasis. Clin Nucl Med 6: 295–296PubMedCrossRefGoogle Scholar
  36. 36.
    Fawcett HD, Sayle BA, Winsett MZ (1985) Indium-III chloride for detecting suspected hepa-tomas with focal defects on 99m-technetium sulfur colloid liver imaging. Clin Nucl Med 10:412–414CrossRefGoogle Scholar
  37. 37.
    Suzuki Y, Hisada K, Hiraki T (1974) Clinical evaluation of tumor scanning with 57-cobalt bleomycin. Radiology 113:139–142PubMedGoogle Scholar
  38. 38.
    Maeda T, Tanaka M (1973) Uptake of 57-Cobleomycin by liver tumor. Radioisotopes 23:37–38Google Scholar
  39. 39.
    Grove RB, Ribo RC, Eckelman WC, Goodyear M (1974) Clinical evaluation of radio labelled bleomycin for tumor detection. Nuc Med 15: 386–388Google Scholar
  40. 40.
    Kew MC, Allen J, Levin J (1976) 57-cobaltbleomycin as a tumor scanning agent in primary hepatocellular cancer. Eur J Nucl Med 1:247–250PubMedCrossRefGoogle Scholar
  41. 41.
    Vorne M, Sakke S, Jarvi K (1982) TC-99m glucoheptonate in detection of lung tumors. J Nucl Med 23:250–255PubMedGoogle Scholar
  42. 42.
    Leveille J, Pison C, Karakand Y (1977) 99m-technetium glucoheptonate in brain tumor detection: an important advance in radio-tracer techniques. J Nucl Med 18:957–967PubMedGoogle Scholar
  43. 43.
    de Kieviet W (1981) Technetium radiophar-maceuticals: chemical characterization and tissue distribution of 99m-technetium glucoheptonate using 99m-technetium and carrier 99m-technetium glucoheptonate. J Nucl Med 22:703–711PubMedGoogle Scholar
  44. 44.
    Esser JD, Kew MC, Tobias M, Winterton R, Savitch I, Levin J (1985) Technetium 99m glucoheptonate as a scanning agent in hepatocellular carcinoma. Clin Nucl Med 10:586–588PubMedCrossRefGoogle Scholar
  45. 45.
    Hayashi M, Tamaki N, Yonikura Y, Saida M (1985) Imaging of hepatocellular carcinoma using dynamic positron emission tomography with nitrogen-13 ammonia. J Nucl Med 26:254–257PubMedGoogle Scholar
  46. 46.
    Paul R, Ahronsen A, Roeda D, Nordman E (1985) Imaging of hepatoma with 18-F-fluorodexoxyglucose. Lancet 1:50–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1987

Authors and Affiliations

  • Michael C. Kew
    • 1
  • Joseph Levin
    • 2
  1. 1.Department of MedicineUniversity of the Witwatersrand and Johannesburg and Hillbrow HospitalsJohannesburgSouth Africa
  2. 2.Department of Nuclear MedicineUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations