Skip to main content

Fatty Acids: Potentially Crucial Modulators of the Malignant Hyperthermia Syndrome

  • Conference paper
  • 75 Accesses

Abstract

While defects in the ryanodine receptor may in some cases be necessary to impart the potential for malignant hyperthermia (MH) susceptibility, these defects are not sufficient to account for the MH syndrome. Obvious examples include swine homozygous for the proposed ryanodine receptor arginine to cysteine #615 MH mutation that do not exhibit an MH reaction at a young age [1] and those that do not consistently exhibit a reaction even as an adult, despite the administration of more than adequate amounts of triggering agents [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheah KS, Cheah AM, Waring JC (1986) Phospholipase A2 activity, calmodulin, Ca2+ and meat quality in young and adult halothane-sensitive and halothane-insensitive British Landrace pigs. Meat Sci 17: 37–53

    Article  PubMed  CAS  Google Scholar 

  2. Fletcher JE, Calvo PA, Rosenberg H (1993) Phenotypes associated with malignant hyperthermia susceptibility in swine genotyped as homozygous or heterozygous for the ryanodine receptor mutation. Br J Anaesth 71: 410–417

    Article  PubMed  CAS  Google Scholar 

  3. Hawkes MJ, Nelson TE, Hamilton SL (1992) [3H]Ryanodine as a probe of changes in the functional state of the Ca2+-release channel in malignant hyperthermia. J Biol Chem 267: 6702–6709

    PubMed  CAS  Google Scholar 

  4. Fletcher JE, Tripolitis L, Rosenberg H, Beech J (1993) Malignant hyperthermia: halothane-and calcium-induced calcium release in skeletal muscle. Biochem Mol Biol Int 29: 763–772

    PubMed  CAS  Google Scholar 

  5. Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72: S15 - S48

    PubMed  CAS  Google Scholar 

  6. Vital Brazil O, Fontana MD (1983) Review article—Toxins as tools in the study of sodium channel distribution in the muscle fibre membrane. Toxicon 31: 1085–1098

    Article  Google Scholar 

  7. Nelson TE (1983) Abnormality in calcium release from skeletal sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia. J Clin Invest 72: 862–870

    Article  PubMed  CAS  Google Scholar 

  8. Ohnishi ST, Taylor S, Gronert GA (1983) Calcium-induced Ca2+ release from sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia: the effects of halothane and dantrolene. FEBS Lett 161: 103–107

    Article  PubMed  CAS  Google Scholar 

  9. Kim DH, Sreter FA, Ohnishi ST, Ryan JF, Roberts J, Allen PD, Meszaros LG, Antoniu B, Ikemoto N (1984) Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia-susceptible pig muscles. Biochim Biophys Acta 775: 320–327

    Article  PubMed  CAS  Google Scholar 

  10. Mickelson JR, Ross JA, Reed BK, Louis CF (1986) Enhanced Ca2+-induced calcium release by isolated sarcoplasmic reticulum vesicles from malignant hyperthermiasusceptible pig muscle. Biochim Biophys Acta 862: 318–328

    Article  PubMed  CAS  Google Scholar 

  11. Fletcher JE, Mayerberger S, Tripolitis L, Yudkowsky M, Rosenberg H (1991) Fatty acids markedly lower the threshold for halothane-induced calcium release from the terminal cisternae in human and porcine normal and malignant hyperthermia-susceptible skeletal muscle. Life Sci 49: 1651–1657

    Article  PubMed  CAS  Google Scholar 

  12. Nelson TE, Lin M, Volpe P (1991) Evidence for intraluminal Ca2+ regulatory site defect in sarcoplasmic reticulum from malignant hyperthermia pig muscle. J Pharmacol Exp Ther 256: 645–649

    PubMed  CAS  Google Scholar 

  13. Fill M, Stefani E, Nelson TE (1991) Abnormal human sarcoplasmic reticulum Carr release channels in malignant hyperthermic skeletal muscle. Biophys J 59: 1085–1090

    Article  PubMed  CAS  Google Scholar 

  14. Nelson TE (1992) Halothane effects on human malignant hyperthermia skeletal muscle single calcium-release channels in planar lipid bilayers. Anesthesiology 76: 588–595

    Article  PubMed  CAS  Google Scholar 

  15. Wieland SJ, Fletcher JE, Rosenberg H, Gong QH (1989) Malignant hyperthermia: slow sodium current in cultured human muscle cells. Am J Physiol 257: C759 - C765

    PubMed  CAS  Google Scholar 

  16. Wieland SJ, Gong Q-H, Fletcher JE, Rosenberg H (1992) Fatty acid activation of silent sodium channels in cultured human skeletal muscle. Anesthesiology 77: A761

    Article  Google Scholar 

  17. Wieland SJ, Fletcher JE, Gong Q-H, Rosenberg H (1991) Effects of lipid-soluble agents on sodium channel function in normal and MH-susceptible skeletal muscle cultures. In: Blanck TJJ, Wheeler DM (eds) Mechanisms of anesthetic action in muscle. Plenum, New York, pp 9–19

    Chapter  Google Scholar 

  18. Ruppersberg JP, Rudel R (1988) Differential effects of halothane on adult and juvenile sodium channels in human muscle. Pflügers Arch 412: 17–21

    PubMed  CAS  Google Scholar 

  19. Cheah KS, Cheah AM (1981) Skeletal muscle mitochondrial phospholipase A2 and the interaction of mitochondria and sarcoplasmic reticulum in porcine malignant hyperthermia. Biochim Biophys Acta 638: 40–49

    Article  PubMed  CAS  Google Scholar 

  20. Fletcher JE, Rosenberg H (1986) In vitro muscle contractures induced by halothane and suxamethonium: II. Human skeletal muscle from normal and malignant hyperthermia-susceptible patients. Br J Anaesth 58: 1433–1439

    Article  PubMed  CAS  Google Scholar 

  21. Foster PS, Gesini E, Claudianos C, Hopkinson KC, Denborough MA (1989) Inositol 1,4,5,-trisphosphate phosphatase deficiency and malignant hyperpyrexia in swine. Lancet 1: 124–126

    Article  Google Scholar 

  22. Scholz J, Roewer N, Rum U, Schmitz W, Scholz H, Schulte am Esch J (1991) Possible involvement of inositol-lipid metabolism in malignant hyperthermia. Br J Anaesth 66: 692–696

    Article  PubMed  CAS  Google Scholar 

  23. Scholz J, Troll U, Schulte am Esch J, Hartung E, Patten M, Sandig P, Schmitz W (1991) Inositol-1,4,5-trisphosphate and malignant hyperthermia. Lancet 337: 1361

    Article  PubMed  CAS  Google Scholar 

  24. Duthie GG, Arthur JR (1993) Free radicals and calcium homeostasis: relevance to malignant hyperthermia. Free Radical Biol Med 14: 435–442

    Article  CAS  Google Scholar 

  25. Fletcher JE, Rosenberg H, Michaux K, Tripolitis L, Lizzo FH (1989) Triglycerides, not phospholipids, are the source of elevated free fatty acids in muscle from patients susceptible to malignant hyperthermia. Eur J Anaesth 6: 355–362

    CAS  Google Scholar 

  26. Fletcher JE, Tripolitis L, Erwin K, Hanson S, Rosenberg H, Conti PA, Beech J (1990) Fatty acids modulate calcium-induced calcium release from skeletal muscle heavy sarcoplasmic reticulum fractions: implications for malignant hyperthermia. Biochem Cell Biol 68: 1195–1201

    Article  PubMed  CAS  Google Scholar 

  27. Olgin J, Rosenberg H, Allen G, Seestedt R, Chance B (1991) A blinded comparison of noninvasive, in vivo phosphorus nuclear magnetic resonance spectroscopy and the in vitro halothane/caffeine contracture test in the evaluation of malignant hyperthermia susceptibility. Anesth Analg 72: 36–47

    Article  PubMed  CAS  Google Scholar 

  28. Vladutiu GD, Hogan K, Saponara I, Tassini L, Conroy J (1993) Carnitine palmitoyl transferase deficiency in malignant hyperthermia. Muscle Nerve 16: 485–491

    Article  PubMed  CAS  Google Scholar 

  29. Fletcher JE, Rosenberg H, Michaux K, Cheah KS, Cheah AM (1988) Lipid analysis of skeletal muscle from pigs susceptible to malignant hyperthermia. Biochem Cell Biol 66: 917–921

    Article  PubMed  CAS  Google Scholar 

  30. Fulceri R, Nori A, Gamberucci A, Volpe P, Giunti R, Benedetti A (1994) Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Calcium 15: 109–116

    Article  PubMed  CAS  Google Scholar 

  31. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448–451

    Article  PubMed  CAS  Google Scholar 

  32. Cheah AM (1981) Effect of long chain unsaturated fatty acids on the calcium transport of sarcoplasmic reticulum. Biochim Biophys Acta 648: 113–119

    Article  PubMed  CAS  Google Scholar 

  33. Dettbarn C, Palade P (1993) Arachidonic acid-induced Cat+ release from isolated sarcoplasmic reticulum. Biochem Pharmacol 45: 1301–1309

    Article  PubMed  CAS  Google Scholar 

  34. Grand RJA (1989) Acylation of viral and eukaryotic proteins. Biochem J 258: 625–638

    PubMed  CAS  Google Scholar 

  35. Wieland SJ, Fletcher JE, Gong Q-H (1992) Differential modulation of a sodium conductance in skeletal muscle by intracellular and extracellular fatty acids. Am J Physiol 263: C308 - C312

    PubMed  CAS  Google Scholar 

  36. Fletcher JE, Erwin K, Beech J (1993) Phenytoin increases specific triacylglycerol fatty esters in skeletal muscle from horses with hyperkalemic periodic paralysis. Biochim Biophys Acta 1168: 292–298

    PubMed  CAS  Google Scholar 

  37. Bennett PB Jr, Makita N, George AL Jr (1993) A molecular basis for gating mode transitions in human skeletal muscle Na+ channels. FEBS Lett 326: 21–24

    Article  PubMed  CAS  Google Scholar 

  38. Chahine M, Bennett PB, George AL Jr, Horn R (1994) Functional expression and properties of the human skeletal muscle sodium channel. Pflügers Arch 427: 136–142

    Article  PubMed  CAS  Google Scholar 

  39. Makita N, Bennett PB Jr, George AL Jr (1994) Voltage-gated Na + channel 13, subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J Biol Chem 269: 7571–7578

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this paper

Cite this paper

Fletcher, J.E., Wieland, S.J. (1996). Fatty Acids: Potentially Crucial Modulators of the Malignant Hyperthermia Syndrome. In: Morio, M., Kikuchi, H., Yuge, O. (eds) Malignant Hyperthermia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68346-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68346-9_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68348-3

  • Online ISBN: 978-4-431-68346-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics