Advertisement

Mutations in the Skeletal Muscle Ryanodine Receptor (RYR1) Gene are Linked to Malignant Hyperthermia and Central-Core Disease

  • David H. MacLennan

Abstract

Skeletal muscle contraction and relaxation are controlled by Ca2+ concentrations within muscle cells [1]. Intracellular Ca2+ concentrations are, in turn, controlled by the sarcoplasmic reticulum. The sarcoplasmic reticulum surrounds each muscle fibril like a water jacket. It is subdivided into functional components: the longitudinal sarcoplasmic reticulum and the terminal cisternae, which itself is divided into junctional and nonjunctional terminal cisternae [2]. The longitudinal sarcoplasmic reticulum and the nonjunctional terminal cisternae have, as their major function, the uptake of Ca2+ through the activity of the Ca2+ pump.

Keywords

Sarcoplasmic Reticulum Ryanodine Receptor Malignant Hyperthermia Malignant Hyperthermia Malignant Hyperthermia Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ebashi S, Endo M, Ohtsuki I (1969) Control of muscle contraction. Q Rev Biophys 2: 351–384PubMedCrossRefGoogle Scholar
  2. 2.
    Fleischer S, Inui M (1989) Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Chem 18: 333–364CrossRefGoogle Scholar
  3. 3.
    Catterall WA (1991) Excitation-contraction coupling in vertebrate skeletal muscle: a tale of two calcium channels. Cell 64: 871–874PubMedCrossRefGoogle Scholar
  4. 4.
    MacLennan, DH, Campbell KP, Reithmeier RAF (1983) Calsequestrin. In: Cheung WY (ed) Calcium and cell function. Academic, New York, pp 151–173Google Scholar
  5. 5.
    Knudson CM, Stang KK, Moomaw CR, Slaughter CA (1993) Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem 268: 12646–12654PubMedGoogle Scholar
  6. 6.
    Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445PubMedCrossRefGoogle Scholar
  7. 7.
    Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2T release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265: 2244–2256PubMedGoogle Scholar
  8. 8.
    Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca“ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265: 13472–13483PubMedGoogle Scholar
  9. 9.
    Kalow WB, Britt A, Terreau ME, Haist C (1970) Metabolic error of muscle metabolism after recovery from malignant hyperthermia. Lancet ii: 895–898Google Scholar
  10. 10.
    Endo M, Yagi S, Ishizuka T, Horiuti K, Koga Y, Amaha K (1983) Changes in the Ca-induced Ca release mechanism in sarcoplasmic reticulum from a patient with malignant hyperthermia. Biomed Res 4: 83–92Google Scholar
  11. 11.
    Ohnishi ST, Taylor S, Gronert GA (1983) Calcium-induced Ca“ release from sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia. The effects of halothane and dantrolene. FEBS Lett 161: 103–107Google Scholar
  12. 12.
    MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, Korneluk RG, Frodis W, Britt BA, Worton RG (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343: 559–561PubMedCrossRefGoogle Scholar
  13. 13.
    McCarthy TV, Healy JMS, Heffron JJA, Lehane M, Deufel T, Lehmann-Horn F, Faralli M, Johnson K (1990) Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12–13.2. Nature 343: 562–564PubMedCrossRefGoogle Scholar
  14. 14.
    Deufel T, Golla A, Iles D, Meindl A, Meitinger T, Schindelhauer D, DeVries A, Pongratz D, MacLennan DH, Johnson KJ, Lehmann-Horn F (1992) Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Am J Hum Genet 50: 1151–1161PubMedGoogle Scholar
  15. 15.
    Fujii J, Otsu K, Zorzato F, deLeon S, Khanna VK, Weiler J, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448–451PubMedCrossRefGoogle Scholar
  16. 16.
    Otsu K, Khanna VK, Archibald AL, MacLennan DH (1991) Co-segregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross families. Genomics 11: 744–750PubMedCrossRefGoogle Scholar
  17. 17.
    Gillard EF, Otsu K, Fujii J, Khanna VK, de Leon S, Derdemezi J, Britt BA, Duff CL, Worton RG, MacLennan DH (1991) A substitution of cysteine for arginine-614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11: 751–755PubMedCrossRefGoogle Scholar
  18. 18.
    Fill M, Coronado R, Mickelson JR, Vilven J, Ma J, Jacobson BA, Louis CF (1990) Abnormal ryanodine receptor channels in malignant hyperthermia. Biophys J 50: 471475Google Scholar
  19. 19.
    Otsu K, Nishida K, Kimura Y, Kuzuya T, Hori M, Kamada T, Tada M (1994) The point mutation Arg615 to Cys in the Ca“ release channel of skeletal sarcoplasmic reticulum is responsible for hypersensitivity to caffeine and halothane in malignant hyperthermia. J Biol Chem 269: 9413–9415PubMedGoogle Scholar
  20. 20.
    O’Brien PJ, Ball RO, MacLennan DH (1994) Effects of heterozygosity for the mutation causing porcine stress syndrome on carcass quality and live performance characteristics. In: Proceedings, 13th international pig veterinary society congress, Bangkok, p 481Google Scholar
  21. 21.
    Gillard EF, Otsu K, Fujii J, Duff CL, de Leon S, Khanna VK, Britt BA, Worton RG, MacLennan DH (1992) Polymorphisms and deduced amino acid substitutions in the coding sequence of the ryanodine receptor (RYR1) gene in individuals with malignant hyperthermia. Genomics 13: 1247–1254PubMedCrossRefGoogle Scholar
  22. 22.
    Quane KA, Keating KE, Manning BM, Healy JMS, Monsieurs K, Heffron JJA, Lehane M, Heytens L, Krivosic-Harber R, Adnet P, Ellis FR, Monnier N, Lumardi J, McCarthy TV (1994) Detection of a novel common mutation in the ryanodine receptor gene in malignant hyperthermia: implications for diagnosis and heterogeneity studies. Hum Mol Genet 3: 471–476PubMedCrossRefGoogle Scholar
  23. 23.
    Phillips MS, Khanna VK, de Leon S, Frodis W, Britt BA, MacLennan DH (1994) The substitution of Arg for G1y2433 in the human skeletal muscle ryanodine receptor is associated with malignant hyperthermia. Hum Mol Genet 3: 2181–2186PubMedCrossRefGoogle Scholar
  24. 24.
    Keating KE, Quane KA, Manning BM, Lehane M, Hartung E, Censier K, Urwyler A, Klausnitzer M, Muller CR, Heffron JJA, McCarthy TV (1994) Detection of a novel RYR1 mutation in four malignant hyperthermia pedigrees. Hum Mol Genet 3: 18551858Google Scholar
  25. 25.
    Larach MG, Landis JR, Shirk BS, Diaz M (1992) The North American Malignant Hyperthermia Registry. Prediction of malignant hyperthermia susceptibility in man: improving sensitivity of the caffeine halothane contracture test. Anesthesiology 77A: 1052CrossRefGoogle Scholar
  26. 26.
    Shy GM, Magee KR (1956) A new congenital non-progressive myopathy. Brain 79: 610621Google Scholar
  27. 27.
    Shuaib A, Paasuke IY, Brownell KW (1987) Central core disease: clinical features in 13 patients. Medicine (Baltimore) 66: 389–396Google Scholar
  28. 28.
    Mulley JC, Kozman HM, Phillips HA, Gedeon AK, McCure JA, Iles DE, Gregg RG, Hogan K, Couch FJ, Weber JL, MacLennan DH, Haan EA (1993) Refined genetic localization for central core disease. Am J Hum Genet 52: 398–405PubMedGoogle Scholar
  29. 29.
    Zhang Y, Chen HS, Khanna VK, de Leon S, Phillips MS, Schappert K, Britt BA, Brownell AKW, MacLennan DH (1993) Identification of a mutation in human ryanodine receptor associated with central core disease. Nature Genet 5: 61–65CrossRefGoogle Scholar
  30. 30.
    Quane KA, Healy JMS, Keating KE, Manning BM, Couch FJ, Palmucci LM, Doriguzzi C, Fagerlund TH, Berg K, Ording H, Bendixen D, Mortier W, Linz U, Muller CR, McCarthey TV (1993) Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nature Genet 5: 51–55PubMedCrossRefGoogle Scholar
  31. 31.
    Quane KA, Keating KE, Healy JMS, Manning BM, Krivosic-Harbey R, Krivosic I, Monnier N, Lunardi J, McCarthy TV (1994) Mutation screening of the RYR1 gene in malignant hyperthermia: detection of a novel Tyr to Ser mutation in a pedigree with associated central cores. Genomics 23: 236–239PubMedCrossRefGoogle Scholar
  32. 32.
    Wrogemann K, Pena SDJ (1976) Mitochondrial calcium overload: a general mechanism for cell necrosis in muscle diseases. Lancet 1: 672–673PubMedCrossRefGoogle Scholar
  33. 33.
    Chen SRW, Airey JA, MacLennan DH (1993) Positioning of major tryptic fragments in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 268: 22642–22649PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • David H. MacLennan
    • 1
  1. 1.Banting and Best Department of Medical ResearchUniversity of Toronto, Charles H. Best InstituteTorontoCanada

Personalised recommendations