Gene Transfer to Hematopoietic Progenitor and Stem Cells: Progress and Problems

  • C. E. Dunbar
  • M. Fox
  • J. O’Shaughnessy
  • S. Doren
  • R. V. B. Emmons
  • T. Soma
  • J. M. Yu
  • C. Carter
  • S. Sellers
  • K. Hines
  • K. Cowan
  • N. S. Young
  • A. W. Nienhuis
Conference paper


The hematopoietic stem cell has been an obvious target for gene therapy technologies because of its ability to permanently reconstitute all the lineages of the hematopoietic and immune systems after transplantation. Many different congenital and acquired diseases could theoretically be treated by introducing a new gene into stem cells.1–4 Retroviral vectors are currently the only gene transfer system with the appropriate characteristics of chromosomal integration and stable helper-free producer cell lines that can be used clinically in protocols targetted at hematopoietic stem cells. In rodent models, investigators have demonstrated efficient and reproducible gene transfer to a high percentage of long-term repopulating stem cells and achieved long-term expression of introduced genes in appropriate lineages.4–7 In large animal and primate models, retroviral gene transfer has been much less efficient, with reproducibly less than 1% of circulating cells containing the transferred gene long-term. 8–12 Efficient gene transfer to primitive human progenitor cells such as CFU-GEMM or long-term culture initiating cells has been reported, with gene transfer efficiencies greatly increased by exposing target cells to hematopoietic growth factors during transduction with viral vectors.I3–15 Over the past four years, investigators have begun to apply retroviral gene transfer technology directed at hematopoietic stem cells in preliminary human clinical trials.


Hematopoietic Stem Cell Gauche Disease Autologous Transplantation Gene Transfer Efficiency Exogenous Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karlsson S: Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood 78: 2481, 1991PubMedGoogle Scholar
  2. 2.
    Dunbar CE, Emmons RVB: Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells 12: 563, 1994PubMedCrossRefGoogle Scholar
  3. 3.
    Mulligan RC: The basic science of gene therapy. Science 260: 926, 1993PubMedCrossRefGoogle Scholar
  4. 4.
    Miller AD: Human gene therapy comes of age. Nature 357: 455, 1992PubMedCrossRefGoogle Scholar
  5. 5.
    Bodine DM, McDonagh KT, Seidel NE, Nienhuis AW: Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection. Exp Hematol 19: 206, 1991PubMedGoogle Scholar
  6. 6.
    Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis AW: Selection of drug resistant bone marrow cells in vivo after retroviral transfer of human MDR 1. Science 257: 99, 1992PubMedCrossRefGoogle Scholar
  7. 7.
    Correll PH, Colilla S, Dave HP, Karlsson S: High levels of human glucocerebrosidase activity in macrophages of long-term reconstituted mice after retroviral infection of hematopoietic stem cells. Blood 80: 331, 1992PubMedGoogle Scholar
  8. 8.
    Schuening FG, Storb R, Stead RB, Goehle S, Nash R, Miller AD: Improved retroviral transfer of genes into canine hematopoietic progenitor cells kept in long-term marrow culture. Blood 74: 152, 1989PubMedGoogle Scholar
  9. 9.
    Carter RF, Abrams-Ogg ACG, Dick JE, Kruth SA, Valli VE, Kamel-Reid S, Dube ID: Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood 79: 356, 1992PubMedGoogle Scholar
  10. 10.
    Schuening FG, Kawahara K, Miller AD, To R, Goehle S, Stewart D, Mullally K, Fisher L, Graham TC, Appelbaum FR, Hackman R, Osborne WRA, Storb R: Retrovirus-mediated gene transduction into long-term repopulating marrow cells of dogs. Blood 78: 2568, 1991PubMedGoogle Scholar
  11. 11.
    Van Beusechem VW, Kukler A, Heidt PJ, Valerio D: Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells. Proc Natl Acad Sci U S A 89: 7640, 1992PubMedCrossRefGoogle Scholar
  12. 12.
    Bodine DM, Moritz T, Donahue RE, Luskey BD, Kessler SW, Martin DIK, Orkin SH, Nienhuis AW, Williams DA: Long term expression of a murine adenosine deaminase (ADA) gene in rhesus hematopoietic cells of multiple lineages following retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82: 1975, 1993PubMedGoogle Scholar
  13. 13.
    Nolta JA, Kohn DB: Comparison of the effects of growth factors on retroviral vector-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells. Human Gene Therapy 1: 257, 1990PubMedCrossRefGoogle Scholar
  14. 14.
    Hughes PFD, Thacker JD, Hogge D, Sutherland HJ, Thomas TE, Lansdorp PM, Eaves CJ, Humphries RK: Retroviral gene transfer to primitive normal and leukemic hematopoietic cells using clinically applicable procedures. J Clin Invest 89: 1817, 1992PubMedCrossRefGoogle Scholar
  15. 15.
    Moore KA, Deisseroth AB, Reading CL, Williams DE, Belmont JW: Stromal support enhances cell-free retroviral vector transduction of human bone marrow long-term culture initiating cells. Blood 79: 1393, 1992PubMedGoogle Scholar
  16. 16.
    Dunbar CE, Nienhuis AW, Stewart FM, Quesenberry P, O’Shaughnessy J, Cowan K, Cottler-Fox M, Leitman S, Goodman S, Sorrentino BP: Amendment to clinical research projects. Genetic marking with retroviral vectors to study the feasibility of stem cell gene transfer and the biology of hematopoietic reconstitution after autologous transplantation in multiple myeloma, chronic myelogenous leukemia, or metastatic breast cancer. Hum Gene Ther 4: 205, 1993PubMedCrossRefGoogle Scholar
  17. 17.
    Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, Doren S, Carter CS, Berenson R, Brown S, Moen RC, Greenblatt J, Stewart FM, Leitman SF, Wilson W, Cowan KH, Young NS, Nienhuis AW: Retrovirally-marked CD34-enriched peripheral blood and bone marrow and cells contribute to long-term engraftment after autologous transplantation. Blood 85: 3048, 1995PubMedGoogle Scholar
  18. 18.
    Soma T, Yu JM, Dunbar C: Maintenance of murine long-term repopulating cells in ex vivo culture is affected by modulation of TGF-ß but not MIP-1® activities. Blood 84: 868a, 1994.Google Scholar
  19. 19.
    Berenson RJ, Bensinger WI, Hill RS, Andrews RG, Garcia-Lopez J, Kalamasz DF, Still BJ, Spitzer G, Buckner CD, Bernstein ID, Thomas ED: Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77: 1717, 1991PubMedGoogle Scholar
  20. 20.
    Miller AD, Buttimore C: Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6: 2895, 1986PubMedGoogle Scholar
  21. 21.
    Cassel A, Cottler-Fox M, Doren S, Dunbar CE: Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp Hematol 21: 585, 1993PubMedGoogle Scholar
  22. 22.
    Roberts A, Sporn M: Physiological actions and applications of transforming growth factor beta. Growth Factors 8: 1, 1993PubMedCrossRefGoogle Scholar
  23. 23.
    Nilsen-Hamilton M: Transforming growth factor-ß and its actions on cellular growth and differentiation. Curr Topics Develop Bio 24: 95, 1990CrossRefGoogle Scholar
  24. 24.
    Kessinger A, Armitage JO, Landmark JD, Smith DM, Weisenberger DD: Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 71: 723, 1988PubMedGoogle Scholar
  25. 25.
    Smedmyr B, Bengtsson M, Jakobsson A, Simonsson B, Oberg G, Totterman TH: Regenerationof CALLA (CD 10+), TdT+ and double-positive cells in the bone marrow and blood after autologous bone marrow transplantation. Eur J Haematol 46: 146, 1991PubMedCrossRefGoogle Scholar
  26. 26.
    Naparstek E, Or R, Nagler A, Cividalli G, Engelhard D, Aker M, Gimon Z, Manny N, Sacks T, Tochner Z, Weiss L, Samuel S, Brautbar C, Hale G, Waldmann H, Steinberg M, Slavin S: T-cell-depleted allogeneic bone marrow transplantation for acute leukemia using campath-1 antibodies and post-transplant administation of donor’s peripheral blood lymphocytes for prevention of relapse. Brit J Haematol 89: 506, 1995CrossRefGoogle Scholar
  27. 27.
    Harousseau JL, Milpied N, Garand R, Bourhis JH: High dose melphelan and autologous BMT in high risk myeloma. Brit J Haematol 67: 493, 1987CrossRefGoogle Scholar
  28. 28.
    Gale RP, Armitage JO, Dicke KA: Autotransplants: now and in the future. Bone Marrow Transplant 7: 153, 1991PubMedGoogle Scholar
  29. 29.
    Harrison DE, Jordan CT, Zhong RK, Astle CM: Primitive hemopoietic stem cells: direct assay of most productive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 21: 206, 1993PubMedGoogle Scholar
  30. 30.
    Kessinger A: Autologous transplantation with peripheral blood stem cells: a review of clinical results. J Clin Apheresis 5: 97, 1990PubMedGoogle Scholar
  31. 31.
    Kessinger A, Smith DM, Strandjord SE, Landmark JD, Dooley DC, Law P, Coccia PF, Warkentin PI, Weisenburger DD, Armitage JO: Allogeneic transplantation of blood-derived, T cell-depleted hemopoietic stem cells after myeloablative treatment in a patient with acute lymphoblastic leukemia. Bone Marrow Transplant 4: 643, 1989PubMedGoogle Scholar
  32. 32.
    Brito-Babapulle F, Bowcock SJ, Marcus RE, Apperley J, Th’ng KH, Dowding C, Rassool F, Guo A-P, Catovsky D, Galton DAG, McCarthy D, Goldman JM: Autografting for patients with chronic myeloid leukaemia in chronic phase: peripheral blood stem cells may have a finite capacity for maintaining haematopoiesis. Brit J Haematol 73: 76, 1989CrossRefGoogle Scholar
  33. 33.
    Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Löffler H, Müller-Ruchholtz W, Schmitz N: G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: Safety, kinetics of mobilization, and composition of the graft. Brit J Haematol 87: 609, 1994CrossRefGoogle Scholar
  34. 34.
    Baumann I, Testa NG, Lange C, De Wynter E, Luft T, Dexter TM, Van Hoef MEHM, Howell A: Haemopoietic cells mobilized into the circulation by lenograstim as an alternative to bone marrow for allogeneic transplants. Lancet 341: 369, 1993PubMedCrossRefGoogle Scholar
  35. 35.
    Pettengell R, Testa NG, Swindell R, Crowther D, Dexter TM: Transplantation potential of hematopoietic cells released into the circulation during routine chemotherapy for non-Hodgkin’s lymphoma. Blood 82: 2239, 1993PubMedGoogle Scholar
  36. 36.
    Sutherland HJ, Eaves CJ, Lansdorp PM, Phillips GL, Hogge DE: Kinetics of committed and primitive blood progenitor mobilizations after chemotherapy and growth factor treatment and their use in autotransplant. Blood 83: 3808, 1994PubMedGoogle Scholar
  37. 37.
    Stewart FM, Crittenden RB, Lowry PA, Pearson-White S, Quesenberry PJ: Long-termengraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood 81: 2544, 1993Google Scholar
  38. 38.
    Wu D-d, Keating A: Hematopoietic stem cells engraft in untreated transplant recipients. Exp Hematol 21: 251, 1993PubMedGoogle Scholar
  39. 39.
    Brenner MK, Rill DR, Holladay MS, Heslop HE, Moen RC, Buschle M, Krance RA, Santana VM, Anderson WF, Ihle JN: Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342: 1134, 1993PubMedCrossRefGoogle Scholar
  40. 40.
    Miller DG, Adam MA, Miller AD: Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239, 1990PubMedGoogle Scholar
  41. 41.
    Kantoff PW, Gillio AP, McLachlin JR, Bordignnnon C, Eglitis MA, Kernan NA, Moen RC, Kohn DB, Yu SF, Karson E, Karlsson S, Zweibel J, Gilboa E, Blaese RM, Neinhuis A, O’Reilly RJ, Anderson WF: Expression of human adenosine deaminase in nonhuman primates after retrovirus-mediated gene transfer. J Exp Med 166: 219, 1987PubMedCrossRefGoogle Scholar
  42. 42.
    Moritz T, Patel VP, Williams DA: Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J Clin Invest 93: 1451, 1994PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1996

Authors and Affiliations

  • C. E. Dunbar
    • 1
  • M. Fox
    • 1
  • J. O’Shaughnessy
    • 1
  • S. Doren
    • 1
  • R. V. B. Emmons
    • 1
  • T. Soma
    • 1
  • J. M. Yu
    • 1
  • C. Carter
    • 1
  • S. Sellers
    • 1
  • K. Hines
    • 1
  • K. Cowan
    • 1
  • N. S. Young
    • 1
  • A. W. Nienhuis
    • 1
  1. 1.Hematology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HeathBethesdaUSA

Personalised recommendations