Skip to main content

Ribozyme-Mediated Reversal of Human Pancreatic Carcinoma Phenotype

  • Conference paper
Bone Marrow Transplantation

Summary

Point mutations in the ras gene have been found in approximately 90% of human pancreatic carcinomas. These alterations can be used as potential targets for specific ribozyme-mediated reversal of the malignant phenotype. We have evaluated the efficacy of a hammerhead ribozyme directed against codon 12 (GUU) of the activated K-ras gene in a Capan-1 human pancreatic carcinoma cell line using different delivery systems. Our results have demonstrated that the anti-Kras ribozyme cloned into the pHß plasmid was able to efficiently suppress K-ras gene expression and to inhibit the proliferation of transfected Capan-1 cells. In contrast, the anti-K-ras ribozyme was less efficient against the Capan-1 cells when cloned into a pLNCX retroviral plasmid. In addition, our results showed that adenoviral-mediated expression of the ribozyme RNA was more effective than the two other plasmid vectors. Our studies have characterized different viral and non-viral delivery systems for the therapeutic application of an anti-K-ras ribozyme against a human pancreatic carcinoma cell line. In the near future, ribozymes could emerge as important therapeutic agents against human malignancies, and optimal delivery systems are necessary to achieve maximal gene therapy benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scanlon KJ, Ohta Y, Ishida H, Ishida H, Ohkawa T, Kaminski A, Tsai J, Horng G, KashaniSabet M (1995) Oligonucleotide-mediated mbdulation of mammalian gene expression. FASEB J 6: 1288–1296

    Google Scholar 

  2. Helene, C (1994) Control of oncogene expression by antisense nucleic acids. Eur J Cancer 30A: 1721–1726

    Article  Google Scholar 

  3. Kashani-Sabet M, Scanlon KJ (1995) Application of ribozymes to cancer gene therapy. Cancer Gene Ther 2: 213–221.

    PubMed  CAS  Google Scholar 

  4. Christoffersen RE, Marr JJ (1995) Ribozymes as human therapeutic agents. J Med Chem 38: 2023–2037

    Article  PubMed  CAS  Google Scholar 

  5. Mercola D, Cohen JS (1995) Antisense approaches to cancer gene therapy. Cancer Gene Ther 2: 47–59

    PubMed  CAS  Google Scholar 

  6. Georges RN, Mukhopadhyay T, Zhang Y, Yen N, Roth JA (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 53: 1743–1746

    PubMed  CAS  Google Scholar 

  7. Zhang Y, Mukhopadhyay T, Donehower LA, Georges RN, Roth JA (1993) Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer inhibits expression of the malignant phenotype. Human Gene Ther 4: 451–460

    Article  CAS  Google Scholar 

  8. Symons RH (1994) Ribozymes. Curr Opin Structural Biol 4: 322–330

    Article  CAS  Google Scholar 

  9. Castanotto D, Rossi JJ, Sarver N (1994) Antisense catalytic RNAs as therapeutic agents. Adv Pharmacol 25: 289–317

    Article  PubMed  CAS  Google Scholar 

  10. Kijima H, Ishida H, Ohkawa T, Kashani-Sabet M, Scanlon KJ (1995) Therapeutic applications of ribozymes. Pharmacol Ther 68: 247–267

    Article  PubMed  CAS  Google Scholar 

  11. Scanlon KJ, Jiao L, Funato T, Wang W, Tone T, Rossi JJ, Kashani-Sabet M (1991) Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein. Proc Natl Acad Sci USA 88: 10591–10595

    Article  PubMed  CAS  Google Scholar 

  12. Scanlon KJ, Ishida H, Kashani-Sabet M (1994) Ribozyme-mediated reversal of the multidrugresistant phenotype. Proc Natl Acad Sci USA 91: 11123–11127

    Article  PubMed  CAS  Google Scholar 

  13. Kashani-Sabet M, Funato T, Tone T, Jiao L, Wang W, Yoshida E, Kashfian BI, Shitara T, Wu AM, Moreno JG, Traweek ST, Ahlering TE, Scanlon KJ (1992) Reversal of the malignant phenotype by an anti-ras ribozyme. Antisense Res Dev 2: 3–15

    PubMed  CAS  Google Scholar 

  14. Kashani-Sabet M, Funato T, Florenes VA, Fodstad O, Scanlon KJ (1994) Suppression of the neoplastic phenotype in vivo by an anti-ras ribozyme. Cancer Res 54: 900–902

    PubMed  CAS  Google Scholar 

  15. Tone T, Kashani-Sabet M, Funato T, Shitara T, Yoshida E, Kashfian BI, Horng M, Fodstad O, Scanlon KJ (1993). Suppression of EJ cells tumorigenicity. In Vivo 7: 471–476

    Google Scholar 

  16. Ohta Y, Tone T, Shitara T, Funato T, Jiao L, Kashfian BI, Yoshida E, Horng H, Tsai P,Lauterbach K, Kashani-Sabet M, Florenes VA, Fodstad O, Scanlon KJ (1994) H-ras ribozyme-mediated alteration of the human melanoma phenotype. Ann N Y Acad Sci 716: 242–253

    Google Scholar 

  17. Funato T, Shitara T, Tone T, Jiao L, Kashani-Sabet M, Scanlon KJ (1994) Suppression of Hras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem Pharmacol 48: 14711475

    Google Scholar 

  18. Feng M, Cabrera G, Deshane J, Scanlon KJ, Curiel DT (1995) Neoplastic reversion accomplished by high efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res 55:2024–2028

    Google Scholar 

  19. Jolly D (1994) Viral vector systems for gene therapy. Cancer Gene Ther 1: 51–64

    PubMed  CAS  Google Scholar 

  20. Hodgson CP (1995) The vector void in gene therapy. Biotechnology 13: 222–225

    Article  PubMed  CAS  Google Scholar 

  21. Gunning P, Leavitt J, Muscat G, Ng S-Y, Kedes L (1987) A human ß-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci USA 84: 4831–4835

    Article  PubMed  CAS  Google Scholar 

  22. Ng S-Y, Gunning P, Eddy R, Ponte P, Leavitt J, Show T, Kedes L (1985) Evolution of the functional human 8-actin gene and its multi-pseudo gene family: Conservation of noncoding regions and chromosomal dispersion of pseudogenes. Mol Cell Biol 5: 2720–2732

    Google Scholar 

  23. Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7: 980–990

    PubMed  CAS  Google Scholar 

  24. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus occurs in cell that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242

    PubMed  CAS  Google Scholar 

  25. Becker TC, Noel RJ, Coats WS, Gomez-Foix AM, Alam T, Gerard RD, Newgard CB (1994) Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol 43: 161–189

    Article  PubMed  CAS  Google Scholar 

  26. Graham FL, Prevec L (1991) Manipulation of adenovirus vectors. Methods Mol Biol 7: 109128

    Google Scholar 

  27. Egan SE, Weinberg RA (1993) The pathway to signal achievement. Nature 365: 781–783

    Article  PubMed  CAS  Google Scholar 

  28. Slamon DJ, deKernion JB, Verma IM, Cline MJ (1984) Expression of cellular oncogenes in human malignancies. Science 224: 256–262

    Article  PubMed  CAS  Google Scholar 

  29. Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827

    Google Scholar 

  30. Bos JL (1989) ras oncogenes in human cancer: A review. Cancer Res 49:4682–4689

    Google Scholar 

  31. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53: 549–554

    Article  PubMed  CAS  Google Scholar 

  32. Tada M, Yokosuka O, Ornata M, Ohto M, Isono K (1990) Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer 66: 930–935

    Article  PubMed  CAS  Google Scholar 

  33. Carter G, Gilbert C, Lemoine NR (1995) Effects of antisense oligonucleotides targeting K-ras expression in pancreatic cancer cell lines. Int J Oncol 6: 1105–1112

    PubMed  CAS  Google Scholar 

  34. Aoki K, Toshida T, Sugimura T, Terada M (1995) Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res 55: 3810–3816

    PubMed  CAS  Google Scholar 

  35. Koizumi M, Hayase Y, Iwai S, Kamiya H, Inoue H, Ohtsuka E (1989) Design of RNA enzymes distinguishing a single base mutation in RNA. Nucleic Acids Res 17: 7059–7071

    Article  PubMed  CAS  Google Scholar 

  36. Hershlag D (1991) Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn’t always better. Proc Natl Acad Sci USA 88: 6921–6925

    Article  Google Scholar 

  37. Bertrand E, Pictet R, Grange T (1994) Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res 22: 293–300

    Article  PubMed  CAS  Google Scholar 

  38. Anderson WF (1992) Human gene therapy. Science 256: 808–813

    Article  PubMed  CAS  Google Scholar 

  39. Sarver N, Cantin EM, Chang PS, Zaia JA, Ladne PA, Stephens DA, Rossi JJ (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247: 1222–1225

    Article  PubMed  CAS  Google Scholar 

  40. Yu M, Ojwang J, Yamada O, Hample A, Rapapport J, Looney D, Wong-Staal F (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type-1. Proc Natl Acad Sci USA 87: 6340–6344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Tokyo

About this paper

Cite this paper

Kijima, H., Bouffard, D.Y., Scanlon, K.J. (1996). Ribozyme-Mediated Reversal of Human Pancreatic Carcinoma Phenotype. In: Ikehara, S., Takaku, F., Good, R.A. (eds) Bone Marrow Transplantation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68320-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68320-9_20

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68322-3

  • Online ISBN: 978-4-431-68320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics