Ischemic Neural Lesions in Cerebral Stroke

  • Keiji Sano
Conference paper


When hemorrhage occurs in the subarachnoid space, intracranial pressure (ICP) inevitably rises, dependent upon the amount and distribution of the subarachnoid blood [30, 31].


Cerebral Vasospasm Free Radical Reaction Double Blind Clinical Trial Cerebral Stroke Transient Forebrain Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames A III, Wright RL, Kowada M, et al. (1968) Cerebral ischemia: II. The no-reflow phenomenon. Am J Pathol 52:437–447PubMedGoogle Scholar
  2. 2.
    Arai H, Lust WD, Passonneau JV (1982) Delayed metabolic changes induced by 5 min of ischemia in gerbil brain. Trans Amer Soc Neurochem 13:177Google Scholar
  3. 3.
    Asano M, Hidaka H (1979) Contractile response of isolated rabbit aortic strips to unsaturated fatty acid peroxides. J Pharmacol Exp Ther 208:347–353PubMedGoogle Scholar
  4. 4.
    Asano T, Sano K (1977) Pathogenetic role of no-reflow phenomenon in experimental subarachnoid hemorrhage in dogs. J Neurosurg 46:454–466PubMedCrossRefGoogle Scholar
  5. 5.
    Asano T, Sasaki T, Koide T, Takakura K, Sano K (1984) Experimental evaluation of the beneficial effect of an antioxidant on cerebral vasospasm. Neurol Research 6:49–53Google Scholar
  6. 6.
    Asano T, Tanishima T, Sasaki T, Sano K (1980) Possible participation of free radical reactions initiated by clot lysis in the pathogenesis of vasospasm after subarachnoid hemorrage. In: Wilkins RH (ed) Cerebral arterial spasm. Williams and Wilkins, Baltimore, pp 190–201Google Scholar
  7. 7.
    Brandt L, Ljunggren B, Anderson KE, Hindfelt B, Teasdale G (1981) Vasoconstrictive effects of human post-hemorrhagic cerebrospinal fluid on cat pial arterioles in situ. J Neurosurg 54:351–356PubMedCrossRefGoogle Scholar
  8. 8.
    Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium-dependant. Neurosci. Lett. 58:293–297PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen G (1983) Catalase, glutathione peroxidase, Superoxide dismutase, and cytochrome P-450. In: Lajtha A (ed) Handbook of neurochemistry, vol. 4. Plenum Press, New York, 2nd edn., pp 315–330CrossRefGoogle Scholar
  10. 10.
    Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13:3–15PubMedGoogle Scholar
  11. 11.
    Falconer MA (1974) Mesial temporal (Ammon’s horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. Lancet Sept 28:767–770Google Scholar
  12. 12.
    Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J (1978) Free radicals in cerebral ischemia. Stroke 9:445–447PubMedCrossRefGoogle Scholar
  13. 13.
    Francis A, Pulsinelli W (1982) The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res 243:271–278PubMedCrossRefGoogle Scholar
  14. 14.
    Gorman RR (1978) Prostaglandins, thromboxanes, and prostacyclin. Biochemistry and mode of action of hormones. Int Rev Biochem 20:81–107Google Scholar
  15. 15.
    Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. Part I. Light microscopic observations. Acta Neuropathol (Berl) 32:209–223CrossRefGoogle Scholar
  16. 16.
    Kahn K (1972) The natural course of experimental cerebral infarction in the gerbil. Neurology (Minneap) 22:510–515CrossRefGoogle Scholar
  17. 17.
    Kassell NF, Sasaki T, Colohan ART, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16:562–572PubMedCrossRefGoogle Scholar
  18. 18.
    Kassell NF, Torner JC (1984) The International Cooperative Study on timing of aneurysm surgery: An update. Stroke 15:566–570PubMedCrossRefGoogle Scholar
  19. 19.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  20. 20.
    Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 62:201–208CrossRefGoogle Scholar
  21. 21.
    Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 62:209–218CrossRefGoogle Scholar
  22. 22.
    Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64:139–147PubMedCrossRefGoogle Scholar
  23. 23.
    Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the hippocampus following brief ischemia. In: Bes A, Braquet P, Paoletti R, Siesjö BK (eds) Cerebral ischemia. Elsevier, Amsterdam, pp 25–34Google Scholar
  24. 24.
    Kirino T, Tamura A, Sano K (1986) A reversible type of neuronal injury following ischemia in the gerbil hippocampus. Stroke 17:455–459PubMedCrossRefGoogle Scholar
  25. 25.
    Kontos HA, Wei EP, Povlishock JT, Dietrich WD, Magiera CJ, Euis EF (1980) Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science 209:1242–1245PubMedCrossRefGoogle Scholar
  26. 26.
    Liszczak TM, Varsos VG, Black P, Kistler JP, Zervas NT (1983) Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J Neurosurg 58:18–26PubMedCrossRefGoogle Scholar
  27. 27.
    Lundberg N, KjälLquist A, Kullberg G, et al. (1974) In: Krayenbühl H (ed) Advances and technical standards in neurosurgery, vol. 1. Springer, Vienna, pp 3–59CrossRefGoogle Scholar
  28. 28.
    McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Eng J Med 312:159–163CrossRefGoogle Scholar
  29. 29.
    Misra HP, Fridovich I (1972) The generation of Superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247:6960–6962PubMedGoogle Scholar
  30. 30.
    Nornes H (1973) The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 39:226–234PubMedCrossRefGoogle Scholar
  31. 31.
    Nornes H, Magnaes B (1972) Intracranial pressure in patients with ruptured saccular aneurysm. J Neurosurg 36:537–547PubMedCrossRefGoogle Scholar
  32. 32.
    Ohta T, Kikuchi H, Hashi K, et al. (1986) Nizofenone administration in the acute stage following subarachnoid hemorrhage. Results of a multicenter controlled double-blind clinical study. J Neurosurg 64:420–426Google Scholar
  33. 33.
    Pulsinelli WA (1985) Deafferentation of the hippocampus protects CA1 pyramidal neurons against ischemic injury. Stroke 16:144Google Scholar
  34. 34.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498PubMedCrossRefGoogle Scholar
  35. 35.
    Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40:1500–1503PubMedCrossRefGoogle Scholar
  36. 36.
    Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11:499–509PubMedCrossRefGoogle Scholar
  37. 37.
    Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220:536–537PubMedCrossRefGoogle Scholar
  38. 38.
    Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRefGoogle Scholar
  39. 39.
    Saito I, Asano T, Ochiai C, et al. (1983) A doubleblind clinical evaluation of the effect of nizofenone (Y-9197) on delayed ischemic neurological deficits following aneurysmal rupture. Neurol Res 5:29–47PubMedGoogle Scholar
  40. 40.
    Saito I, Sano K (1979) Vasospasm following rupture of cerebral aneurysms. Neurol Med Chir (Tokyo) 19:103–107CrossRefGoogle Scholar
  41. 41.
    Saito I, Sano K (1980) vasospasm after aneurysm rupture: Incidence, onset, and course. In: Wilkins, RH (ed) Cerebral arterial spasm. Williams and Wilkins, Baltimore, pp 294–301Google Scholar
  42. 42.
    Saito I, Ueda Y, Sano K (1977) Significance of vasospasm in the treatment of ruptured in tracranial aneurysms. J Neurosurg 47:412–429PubMedCrossRefGoogle Scholar
  43. 43.
    Sano K (1983) Cerebral vasospasm and aneurysm surgery. Clin Neurosurg 30:13–58PubMedGoogle Scholar
  44. 44.
    Sano K, Asano T, Tanishima T, Sasaki T (1980) Lipid peroxidation as a cause of cerebral vasospasm. Neurol Res 2:253–272PubMedGoogle Scholar
  45. 45.
    Sano K, Malamud N (1953) Clinical significance of sclerosis of the cornuammonis: Ictal “psychic phenomena”. Arch Neurol Psychiatry 70:40–53Google Scholar
  46. 46.
    Sano K, Saito I (1980) Early operation and washout of blood clots for prevention of cerebral vasospasm. In: Wilkins RH (ed) Cerebral arterial spasm. Williams and Wilkins, Baltimore, pp 510–513Google Scholar
  47. 47.
    Sano K, Sasaki T, Watanabe T, Asano T (1981) Cerebral vasospasm: The result of lipid peroxidation leading to inhibition of prostacyclin biosynthesis in the cerebral artery. Neurosurgeons (Tokyo) 1:105–111Google Scholar
  48. 48.
    Sasaki T, Asano T, Sano K (1980) Cerebral vasospasm and free radical reactions. Neurol Med Chir (Tokyo) 20:145–153CrossRefGoogle Scholar
  49. 49.
    Sasaki T, Asano T, Takakura K, Sano K, Kassell NF (1984) Nature of the vasoactive substance in CSF from patients with subarachnoid hemorrhage. J Neurosurg 60:1186–1191PubMedCrossRefGoogle Scholar
  50. 50.
    Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M (1985) Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage. J Neurosurg 63:433–440PubMedCrossRefGoogle Scholar
  51. 51.
    Sasaki S, Kuwabara H, Ohta S (1986) Biological defence mechanism in the pathogensis of prolonged cerebral vasospasm in the patients with ruptured intracranial aneurysms. Stroke 17:196–202CrossRefGoogle Scholar
  52. 52.
    Sasaki T, Murota S, Wakai S, Asano T, Sano K (1981) Evaluation of prostaglandin biosynthetic activity in canine basilar artery following subarachnoid injection of blood. J Neurosurg 55:771–778PubMedCrossRefGoogle Scholar
  53. 53.
    Sasaki T, Wakai S, Asano T, Takakura K, Sano K (1982) Prevention of cerebral vasospasm after SAH with a thromboxane synthetase inhibitor OKY-1581. J Neurosurg 57:74–82PubMedCrossRefGoogle Scholar
  54. 54.
    Sasaki T, Wakai S, Asano T, Watanabe T, Kirino T, Sano K (1981) The effect of a lipid hydroperoxide of arachidonic acid on the canine basilar artery. An experimental study on cerebral vasospasm. J Neurosurg 54:357–365Google Scholar
  55. 55.
    Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852PubMedCrossRefGoogle Scholar
  56. 56.
    Smith M-L, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332CrossRefGoogle Scholar
  57. 57.
    Sommer W (1880) Erkrankungen des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiat Nervenkr 10:631–675CrossRefGoogle Scholar
  58. 58.
    Suzuki R, Yamaguchi T, Kirino T, Orzi F, Klatzo I (1983) The effects of 5-minute ischemia in Mon golian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes. Acta Neuropathol (Berl) 60:207–216Google Scholar
  59. 59.
    Suzuki R, Yamaguchi T, Li CL, Klatzo I (1983) The effects of 5-minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol (Berl) 60:217–3222CrossRefGoogle Scholar
  60. 60.
    Tamura A, Asano T, Sano K, Tsumagari T, Nakajima A (1979) Protection from cerebral ischemia by a new imidazole derivative (Y-9179) and pentobarbital. A comparative study in chronic middle cerebral artery occlusion in cats. Stroke 10:126–134Google Scholar
  61. 61.
    Tanishima T, Asano T, Sasaki T, Sano K (1979) Role of peroxidation in the genesis of cerebral arterial spasm. Acta Neurol Scand (Suppl) 60:484–485Google Scholar
  62. 62.
    Wieloch T (1985) Hypoglycemia-induced neuronal damage prevented by an N-methly-D-aspartate antogonist. Science 230:681–683PubMedCrossRefGoogle Scholar
  63. 63.
    Wieloch T, Lindvall O, Blomqvist P, Gage FH (1985) Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol Res 7:24–26PubMedGoogle Scholar
  64. 64.
    Zervas NT, Liszcak TM, Mayberg MR, Brack PM (1982) Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum. J Neurosurg 56:475–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1988

Authors and Affiliations

  • Keiji Sano
    • 1
  1. 1.Department of NeurosurgeryTeikyo University School of MedicineTokyoJapan

Personalised recommendations