Advertisement

Recent Evidence for Evolution of the Genetic Code

  • Thomas H. Jukes
  • Syozo Osawa

Summary

The genetic code is evolving, and is not “frozen.” This is shown by 8 departures from the universal code: 5 of them are in mitochondria and 3 are in nuclear codes. We propose that these changes are preceded by disappearance of a codon from coding sequences in mRNA of an organism or organelle. The function of the codon that disappears is taken by other, synonymous codons, so that there is no change in amino acid sequences of proteins. The deleted codon then reappears with a new function. This may be implemented in one of three ways: (1) by a mutation in an anticodon; (2) by change to a different amino acid in aminoacylation of a tRNA molecule, while retaining the same anticodon, or; (3) in mitochondria, by change in the codon-anticodon pairing.

The first procedure occurred in changing codon UGA from stop to tryptophan, codons UAR from stop to glutamine, and codon AAA from lysine to asparagine. The second procedure occurred in changing codon CUN from leucine to threonine CUG form leucine to serine. The third procedure was in AGR from arginine to serine, AGR from serine to stop and in CAU from only pairing with AUG to pairing with AUA and AUG. All these changes were non-disruptive.

Keywords

Genetic Code Candida Cylindracea Universal Code tRNA Meet Mitochondrial Genetic Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami S, Azumi Y, Osawa S (1985) UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci USA 82: 2306–2309PubMedCrossRefGoogle Scholar
  2. 2.
    Jukes TH (1985) A change in the genetic code in Mycoplasma capricolum. J Mol Evol 22: 361–362PubMedCrossRefGoogle Scholar
  3. 3.
    Jukes, TH, Osawa S, Muto A (1987) Divergence and directional mutation pressures. Nature 325: 668PubMedCrossRefGoogle Scholar
  4. 4.
    Osawa S, Jukes TH, Muto A, Yamao F, Ohama T, Andachi Y (1987) Role of directional mutation pressure in the evolution of the eubacterial genetic code. Cold Spring Harbor Symp Quant Biol 55: 777–789Google Scholar
  5. 5.
    Jukes TH, Osawa S, Muto A, Lehman N (1987) Evolution of anticodons: Variations in the genetic code. Cold Spring Harbor Symp Quant Biol 52: 769–776PubMedGoogle Scholar
  6. 6.
    Osawa S, Jukes TH (1988) Evolution of the genetic code as affected by anticodon content. Trends Genet 4: 191–198PubMedCrossRefGoogle Scholar
  7. 7.
    Osawa S, Ohama T, Yamao F, Muto A., Jukes TH, Ozeki H, Umesono K (1988) Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets. Proc Natl Acad Sci USA 85: 1124–1128PubMedCrossRefGoogle Scholar
  8. 8.
    Lehman N, Jukes THJ (1988) Genetic code development by stop codon takeover. J Theor Biol 135: 203–214PubMedCrossRefGoogle Scholar
  9. 9.
    Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28: 271–278PubMedCrossRefGoogle Scholar
  10. 10.
    Osawa, S, Takeshi O, Jukes TH, Watanabe K (1989) Evolution of the mitochondrial genetic code I. Origin of AGR serine and stop codons in metazoan mitochondria. J Mol Evol 29: 202–207PubMedCrossRefGoogle Scholar
  11. 11.
    Osawa S, Ohama T, Jukes TH, Watanabe K, Yokoyama S (1989) Evolution of the mitochondrial genetic code II. Reassignment of codon AUA from isoleucine to methionine. J Mol Evol 29: 373–380PubMedCrossRefGoogle Scholar
  12. 12.
    Osawa S, Collins D, Ohama T, Jukes TH, Watanabe K (1990) Evolution of the mitochondrial genetic code III. Reassignment of CUN codons from leucine to threonine during evolution of yeast mitochondria. J Mol Evol 30: 322–328PubMedCrossRefGoogle Scholar
  13. 13.
    Ohama T, Osawa S, Watanabe K, Jukes TH (1990) Evolution of the mitochondrial genetic code IV. AAA as an asparagine codon in some animal mitochondria. J Mol Evol 30: 329–332PubMedCrossRefGoogle Scholar
  14. 14.
    Crick FHC (1968) The origin of the genetic code. J Mol Biol 38: 367–379PubMedCrossRefGoogle Scholar
  15. 15.
    Jungck JR (1978) The genetic code as a periodic table. J Mol Evol 11: 211–224PubMedCrossRefGoogle Scholar
  16. 16.
    Helftenbein E (1985) Nucleotide sequence of a macronuclear DNA molecule coding for alpha-tubulin from the ciliate Stylonychia lemnae. Special codon usage: TAA is not a translation termination codon. Nucleic Acids Res 13: 415–433PubMedCrossRefGoogle Scholar
  17. 17.
    Horowitz S, Gorovsky MA (1985) An unusual genetic code in nuclear genes of Tetrahymena. Proc Natl Acad Sci USA 82: 2452–2455PubMedCrossRefGoogle Scholar
  18. 18.
    Preer JR Jr, Preer LB, Radman BM, Barnett AJ (1985) Deviation from the universal code shown by the gene for surface protein 51A in Paramecium. Nature 314: 188–190Google Scholar
  19. 19.
    Caron F, Meyer E (1985) Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature 314: 185–188PubMedCrossRefGoogle Scholar
  20. 20.
    Hanyu N, Kuchino Y, Nishimura S, Beier H (1986) Dramatic events in ciliate evolution: Alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two Tetrahymena tRNAs Gin. EMBO J 5: 1307–1311PubMedGoogle Scholar
  21. 21.
    Kawaguchi Y, Honda H, Taniguchi-Morimura J, Iwasaki S (1989) The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature 341: 164–166PubMedCrossRefGoogle Scholar
  22. 22.
    Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48: 582–592PubMedCrossRefGoogle Scholar
  23. 23.
    Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85: 2653–2657PubMedCrossRefGoogle Scholar
  24. 24.
    Yamao F, Iwagami S, Azumi Y, Muto A, Osawa S (1988) Evolutionary dynamics of tryptophan tRNAs in Mycoplasma capricolum. Mol Gen Genet 212: 364–369PubMedCrossRefGoogle Scholar
  25. 25.
    Inamine JM, Ho K, Loechel S, Hu P (1990) Evidence that UGA is read as tryptophan rather than stop by Mycoplasma pneumoniae, Mycoplasma genitalium and Mycoplasma gal- lisepticum. J Bacteriol 172: 504–506PubMedGoogle Scholar
  26. 26.
    Barrell G, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282: 189–194PubMedCrossRefGoogle Scholar
  27. 27.
    Heckman JE, Sarnoff J, Alzner-de Weerd B, Yin S, Rajbhandary UL (1980) Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc Natl Acad Sci USA 77: 3159–3163PubMedCrossRefGoogle Scholar
  28. 28.
    Muramatsu T, Yokoyama S, Hirose N, Matsuda A, Ueda T, Yamaizumi Z, Kuchino Y, Nishimura S, Miyazawa T (1988) A novel lysine-substituted nucleoside in the first position of the anticodon of amino isoleucine tRNA from Escherichia coli. J Biol Chem 263: 9261–9267PubMedGoogle Scholar
  29. 29.
    Muramatsu T, Nishikawa K, Nemoto F, Kuchino Y, Nishimura A, Miyazawa T, Yokoyama S (1988) Codon and amino acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336: 179–181PubMedCrossRefGoogle Scholar
  30. 30.
    Elliott MS, Trewyn RW (1984) Inosine biosynthesis in transfer RNA by enzymatic insertion of hypoxanthine. J Biol Chem 259: 2407PubMedGoogle Scholar
  31. 31.
    Crick FHC (1966) Codon-anticodon pairing: The wobble hypothesis. J Mol Biol 19: 548–555PubMedCrossRefGoogle Scholar
  32. 32.
    Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, Miyazawa T (1985) Molecular mechanism of codon recognition by tRNAs with modified uridine in the first position of the anticodon. Proc Natl Acad Sci USA 82: 4905–4909PubMedCrossRefGoogle Scholar
  33. 33.
    Köchel HG, Lazarus CM, Basak N, Kuntzel H (1981) Mitochondrial tRNA gene clusters in Aspergillus nidulans: Organizations and nucleotide sequence. Cell 23: 625–633PubMedCrossRefGoogle Scholar
  34. 34.
    Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77: 3167–3170PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs HT, Elliot D, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202: 185–217PubMedCrossRefGoogle Scholar
  36. 36.
    Jacobs HT, Asakawa S, Miura K-I, Watanabe K (1989) Conserved tRNA gene cluster in starfish mitochondrial DNA. Curr Genet 15: 193–206PubMedCrossRefGoogle Scholar
  37. 37.
    Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K, Watanabe K (1987) Unusual genetic code and a novel gene structure for tRNA Ser AGY in starfish mitochondrial DNA. Gene 56: 219–230PubMedCrossRefGoogle Scholar
  38. 38.
    Harper DS, Jahn CL (1989) Differential use of termination codons in ciliated protozoa. Proc Natl Acad Sci USA 86: 3252–3256PubMedCrossRefGoogle Scholar
  39. 39.
    Schneider SU, Leible MB, Yang X-P (1989) Strong homology between the small sub- unit of ribulose-l,5-biphosphate carboxylase/oxygenase of two species of Acetabularia and the occurrence of unusual codon usage. Mol Gen Genet 218: 445–452PubMedCrossRefGoogle Scholar
  40. 40.
    Normanly J, Ogden RC, Horvath SJ, Abelson J (1986) Changing the identity of a transfer RNA. Nature 321: 213–219PubMedCrossRefGoogle Scholar
  41. 41.
    Food and Nutrition Board (1989) Recommended dietary allowances, 10th edn. National Academy Press, Washington, D.C.Google Scholar
  42. 42.
    Hoekstra WG (1975) Biochemical function of selenium and its relation to vitamin E. Fed Proc 34: 2083–2089Google Scholar
  43. 43.
    Stadtman TC (1974) Selenium biochemistry. Science 183: 915–922PubMedCrossRefGoogle Scholar
  44. 44.
    Hartmanis MGN, Stadtman TC (1982) Isolation of a selenium-containing thiolase from Clostridium kluyveri: Identification of the selenium moiety as selenomethionine. Proc Natl Acad Sci USA 79: 4912–4916Google Scholar
  45. 45.
    Stadtman TC (1987) Specific occurrence of selenium in enzymes and amino acid tRNAs. FASEBJ 1: 375–379Google Scholar
  46. 46.
    Zinoni F, Birkmann A, Leinfelder W, Böck A (1987) Cotranslational insertion of a selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci USA 84: 3156–3160PubMedCrossRefGoogle Scholar
  47. 47.
    Leinfelder W, Zehelein E, Mandrand-Berthelot M-A, Bock A (1988) Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331: 723–725PubMedCrossRefGoogle Scholar
  48. 48.
    Gualberto JM, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341: 660–662PubMedCrossRefGoogle Scholar
  49. 49.
    Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341: 662–666PubMedCrossRefGoogle Scholar
  50. 50.
    Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246: 1632–1634PubMedCrossRefGoogle Scholar
  51. 51.
    Maréchal-Drouard L, Guillemaut P, Cosset A, Arbogast M, Weber F, Weil J, Dietrich A (1990) Transfer RNAs of potato (Solarium tuberosum) mitochondria have different genetic origins. Nucleic Acids Res 18: 3689–3696PubMedCrossRefGoogle Scholar
  52. 52.
    Jukes TH (1966) Molecules and evolution. Columbia University Press, New YorkGoogle Scholar
  53. 53.
    Wong JT-F (1976) The evolution of a universal genetic code. Proc Natl Acad Sci USA 73: 2336–2340PubMedCrossRefGoogle Scholar
  54. 54.
    Wong JT-F (1988) Evolution of the genetic code. Microbiol Sci 5: 174–181PubMedGoogle Scholar
  55. 55.
    Ohkubo S, Muto A, Kawauchi Y, Yamao F, Osawa S (1987) The ribosomal protein gene cluster of Mycoplasma capricolum. Molec Gen Genet 210: 314–322PubMedCrossRefGoogle Scholar
  56. 56.
    Andachi Y, Yamao F, Muto A, Osawa S (1989) Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma carpricolum. Resemblance to mitochondria. J molec Biol 209: 37–54Google Scholar
  57. 57.
    Zinoni F, Heider J, Bock A (1990) Features of the formate-dehydrogenase mRNA necessary for decoding of the UGA codon as cysteine. Proc Nat Acad Sci USA 87: 4660–4664PubMedCrossRefGoogle Scholar
  58. 58.
    Osawa S, Muto A, Jukes TH, Ohama T (1990) Evolutionary changes in the genetic code. Proc Roy Soc Lond B 241: 19–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Thomas H. Jukes
    • 1
  • Syozo Osawa
    • 2
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of BiologyNagoya UniversityChikusa-Ku, NagoyaJapan

Personalised recommendations