Skip to main content

Neutral Evolution

  • Chapter
Book cover Evolution of Life

Summary

By “neutral evolution” I mean the process of substitutions of selectively neutral (i. e., selectively equivalent) mutants in the species through random genetic drift under continued mutation pressure. According to the neutral theory of molecular evolution, the great majority of evolutionary changes at the molecular level (such as DNA base substitutions and amino acid replacements) are the result of such neutral evolution, rather than the result of Darwinian adaptive evolution. The neutral theory also claims that most of the genetic variability within species at the molecular level (such as protein and DNA polymorphism) is selectively neutral or very nearly neutral so that the majority of polymorphic alleles are maintained in the species by the balance between mutational input and random extinction, but not by balancing natural selection. The neutral theory is based on simple assumptions, and this enables us to develop mathematical theories based on population genetics to treat these phenomena of evolution and variation in quantitative terms. This permits the theory to be tested against actual observations. In this paper, I review some recent data strongly suggesting neutral evolution, including such topics as pseudoglobin genes of the mouse, αA-crystallin genes of the blind mole rat and genes of RNA viruses. I also discuss some problems of DNA polymorphism in the light of the neutral theory. Finally, I emphasize the importance of population genetics in understanding the mechanisms of molecular evolution. It is concluded that, since the origin of life on Earth, the great majority of evolutionary changes have been neutral rather than Darwinian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624–626

    Article  PubMed  CAS  Google Scholar 

  2. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  3. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49: 725–738

    PubMed  CAS  Google Scholar 

  4. Kimura M (1968) Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral alleles. Genet Res 11: 247–269

    Article  PubMed  CAS  Google Scholar 

  5. Kimura M (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61: 893–903

    PubMed  CAS  Google Scholar 

  6. Kimura M (1971) Theoretical foundation of population genetics at the molecular level. Theor Popul Biol 2: 174–208

    Article  PubMed  CAS  Google Scholar 

  7. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  8. Ohta T, Aoki K (eds) (1985) Population genetics and molecular evolution. Japan Scientific Societies, Tokyo and Springer, Berlin

    Google Scholar 

  9. Takahata N, Crow JF (eds) (1990) Population biology of genes and molecules. Baifukan, Tokyo

    Google Scholar 

  10. Kimura M, Ohta T (1971) Theoretical aspects of population genetics. Princeton University Press, Princeton

    Google Scholar 

  11. Kimura M, Ohta T (1969) The average number of generations until fixation of a mutant gene in a finite population. Genetics 61: 763–771

    PubMed  CAS  Google Scholar 

  12. Kimura M, Ohta T (1974) On some principles governing molecular evolution. Proc Natl Acad Sci USA 71: 2848–2852

    Article  PubMed  CAS  Google Scholar 

  13. Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267: 275–276

    Article  PubMed  CAS  Google Scholar 

  14. Miyata T, Yasunaga T (1981) Rapidly evolving mouse a-globin-related pseudogene and its evolutionary history. Proc Natl Acad Sci USA 78: 450–453

    Article  PubMed  CAS  Google Scholar 

  15. Li W-H, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292: 237–239

    Article  PubMed  CAS  Google Scholar 

  16. Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82: 1741–1745

    Article  PubMed  CAS  Google Scholar 

  17. Kikuno R, Hayashida H, Miyata T (1985) Rapid rate of rodent evolution. Proc Jpn Acad 61 (B): 153–156

    Article  CAS  Google Scholar 

  18. Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26: 24–33

    Article  PubMed  CAS  Google Scholar 

  19. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York, pp 297–312

    Google Scholar 

  20. Hendriks W, Leunissen J, Nevo E, Bloemendal H, dejong WW (1987) The lens protein αA-crystallin of the blind mole rat, Spalax ehrenbergv. Evolutionary change and functional constraints. Proc Natl Acad Sci USA 84: 5320–5324

    Article  PubMed  CAS  Google Scholar 

  21. Stebbins GL, Hartl DL (1988) Comparative evolution: Latent potentials for anagenetic advance. Proc Natl Acad Sci USA 85: 5141–5145

    Article  PubMed  CAS  Google Scholar 

  22. Saitou N, Nei M (1986) Polymorphism and evolution of influenza A virus genes. Mol Biol Evol 3: 57–74

    PubMed  CAS  Google Scholar 

  23. Hayashida H, Toh H, Kikuno R, Miyata T (1985) Evolution of influenza virus genes. Mol Biol Evol 2: 289–303

    PubMed  CAS  Google Scholar 

  24. Gojobori T, Moriyama EN, Kimura M (in press) Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci USA

    Google Scholar 

  25. Gojobori T, Yokoyama S (1987) Molecular evolutionary rates of oncogenes. J Mol Evol 26: 148–156

    Article  PubMed  CAS  Google Scholar 

  26. Yokoyama S, Gojobori T (1987) Molecular evolution and phylogeny of the human AIDS viruses LAV, HTLV-III, and ARV. J Mol Evol 24: 330–336

    Article  PubMed  CAS  Google Scholar 

  27. Yokoyama S, Moriyama EN, Gojobori T (1987) Molecular phylogeny of the human immunodeficiency and related retroviruses. Proc Jpn Acad 63 (B): 147–150

    Article  CAS  Google Scholar 

  28. Penny D (1988) Origins of the AIDS virus. Nature 339: 494–495

    Article  Google Scholar 

  29. Li W-H, Tanimura M, Sharp PM (1988) Rates and dates of divergence between AIDS virus nucleotide sequences. Mol Biol Evol 5: 315 - 330

    Google Scholar 

  30. Harris H, Hopkinson DA (1972) Average heterozygosity per locus in man: An estimate based on the incidence of enzyme polymorphisms. Ann Hum Genet 36: 9–20

    Article  PubMed  CAS  Google Scholar 

  31. Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press, New York

    Google Scholar 

  32. Kimura M (1974) Gene pool of higher organisms as a product of evolution. Cold Spring Harbor Symp Quant Biol 38: 515–524

    PubMed  CAS  Google Scholar 

  33. Kazazian HH Jr, Chakravarti A, Orkin SH, Antonarakis SE (1983) DNA polymorphisms in the human ß globin gene cluster. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, pp 137–146

    Google Scholar 

  34. Nei M, Tajima F (1981) DNA polymorphism detected by restriction endonucleases. Genetics 97: 145–163

    PubMed  CAS  Google Scholar 

  35. Kimura M (1983) Rare variant alleles in the light of the neutral theory. Mol Biol Evol 1: 84–93

    PubMed  CAS  Google Scholar 

  36. Satta Y, Matsuura ET, Chigusa SI (1990) Mitochondrial DNA polymorphism in Drosophila melanogaster. In: Takahata N, Crow JF (eds) Population biology of genes and molecules. Baifukan, Tokyo, pp 57–73

    Google Scholar 

  37. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, pp 62–88

    Google Scholar 

  38. Horai S (1991) Molecular phylogeny and evolution of human mitochondrial DNA. In: Kimura M, Takahata N (eds) New aspects of the genetics of molecular evolution. Japan Sci Soc. Press, Tokyo/Springer-Verlag, Berlin

    Google Scholar 

  39. Van Valen L (1974) Molecular evolution as predicted by natural selection. J Mol Evol 3: 89–101

    Article  PubMed  Google Scholar 

  40. Watson JD, Hopkins NH, Roberts JW, Steiz JA, Weiner AM (1987) Molecular Biology of the Gene, 4th edn. Benjamin and Cummings, New York

    Google Scholar 

  41. Zuckerkandl E (1976) Evolutionary processes and evolutionary noise at the molecular level, II. A selectionist model for random fixations in proteins. J Mol Evol 7: 269–311

    Article  PubMed  CAS  Google Scholar 

  42. Muto A, Yamao F, Kawauchi Y, Osawa S (1985) Codon usage in Mycoplasma capricolum. Proc Jpn Acad 61 (B): 12–15

    Article  CAS  Google Scholar 

  43. Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami S, Azumi Y, Osawa S (1985) UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci USA 82: 2306–2309

    Article  PubMed  CAS  Google Scholar 

  44. Jukes TH (1985) A change in the genetic code in Mycoplasma capricolum. J Mol Evol 22: 361–362

    Article  PubMed  CAS  Google Scholar 

  45. Dyson F (1985) Origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  46. Cairns-Smith AG (1986) Chirality and the common ancestor effect. Chem Br 22: 559–561

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kimura, M. (1991). Neutral Evolution. In: Osawa, S., Honjo, T. (eds) Evolution of Life. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68302-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68302-5_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68304-9

  • Online ISBN: 978-4-431-68302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics