The Genomic Tag Model for the Origin of Protein Synthesis

Further Evidence from the Molecular Fossil Record
  • Alan M. Weiner
  • Nancy Maizels


A central problem in envisioning the evolution of modern protein synthesis has been that none of the individual components—ribosomal RNAs and ribosomal proteins, initiation and elongation factors, tRNAs and tRNA synthetases—appears to be useful individually, yet the molecular apparatus for translation must have evolved stepwise. We have proposed that modern tRNAs derive from 3’ terminal tRNA-like structures that tagged genomes for replication in the RNA world [1]. In early genomes these tRNA-like structures would have provided an initiation site for the replicase and functioned as primitive telomeres. In contemporary genomes similar structures persist as the termini of many RNA viruses; as primers for retrovirus replication; as punctuation in the rRNA operons of eubacteria, chloroplasts, and mitochondria; as the termini of the genomic RNAs of two Neurospora mitochondrial retroplasmids; as modern DNA telomeres; and possibly as internal promoters for RNA polymerase III. These contemporary functions and structures of tRNA motifs reflect evolutionary history as well as the requirements of function, and may therefore be considered molecular fossils of ancient genomic tags.


Replication Strategy rRNA Operon Molecular Fossil Mitochondrial Plasmid tRNA Primer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiner AM, Maizels N (1987) 3’ Terminal tRNA-like structures tag genomic RNA molecules for replication: Implications for the origin of protein synthesis. Proc Nat Acad Sci 84: 7383–7387PubMedCrossRefGoogle Scholar
  2. 2.
    Popper KR (1963) Conjectures and refutations, 4th edn. Routledge, LondonGoogle Scholar
  3. 3.
    Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38: 381–393PubMedCrossRefGoogle Scholar
  4. 4.
    White HB III (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7: 101–104PubMedCrossRefGoogle Scholar
  5. 5.
    Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27: 487–496PubMedCrossRefGoogle Scholar
  6. 6.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857PubMedCrossRefGoogle Scholar
  7. 7.
    Gilbert W (1986) The RNA world. Nature 319: 618Google Scholar
  8. 8.
    Joyce GF (1989) RNA evolution and the origins of life. Nature 338: 217–224PubMedCrossRefGoogle Scholar
  9. 9.
    Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 86: 7054–7058PubMedCrossRefGoogle Scholar
  10. 10.
    Crick FHC (1968) The origin of the genetic code. J Mol Biol 38: 367–379PubMedCrossRefGoogle Scholar
  11. 11.
    Rao ALN, Dreher TW, Marsh LE, Hall TC (1989) Telomeric function of the tRNA- like structure of brome mosaic virus RNA. Proc Natl Acad Sci USA 86: 5335–5339PubMedCrossRefGoogle Scholar
  12. 12.
    Blumenthal T, Carmichael GC (1979) RNA replication: Function and structure of QB- replicase. Annu Rev Biochem 48: 525–548PubMedCrossRefGoogle Scholar
  13. 13.
    Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15: 8783–8798PubMedCrossRefGoogle Scholar
  14. 14.
    Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn R, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12: 7035–7056PubMedCrossRefGoogle Scholar
  15. 15.
    Alberts BM (1986) The function of the hereditary materials: Biological catalyses refect the cell’s evolutionary history. Am Zoologist 26: 781–796Google Scholar
  16. 16.
    McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238: 527–530PubMedCrossRefGoogle Scholar
  17. 17.
    Visser CM, Kellogg RM (1978) Biotin: Its place in evolution. J Mol Evol 11: 171–187PubMedCrossRefGoogle Scholar
  18. 18.
    Visser CM, Kellogg RM (1978) Bioorganic chemistry and the origin of life. J Mol Evol 11: 163–169PubMedCrossRefGoogle Scholar
  19. 19.
    White HB III (1982) Evolution of coenzymes and the origin of pyridine nucleotides. In: Everse J, Anderson B, Yu KS (eds) The pyridine coenzymes. Academic, New York, pp 1–17Google Scholar
  20. 20.
    Hicke BJ, Christian EL, Yarus M (1989) Stereoselective arginine binding is a phylogenetically conserved property of group I self-splicing RNAs. EMBO J 8: 3843–3851PubMedGoogle Scholar
  21. 21.
    Jay DG, Gilbert W (1987) Basic protein enhances the incorporation of DNA into lipid vesicles: A model for the formation of primordial cells. Proc NatlE Acad Sci USA 84: 1978–1980CrossRefGoogle Scholar
  22. 22.
    Maizels N, Weiner AM (1987) Peptide-specific ribosomes, genomic tags and the origin of the genetic code. Cold Spring Harbor Symp Quant Biol 52: 743–749PubMedGoogle Scholar
  23. 23.
    Schimmel P (1987) Aminoacyl tRNA synthetases: General scheme of structure function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56: 125–158PubMedCrossRefGoogle Scholar
  24. 24.
    Umesono K and Ozeki H (1987) Chloroplast gene organization in plants. Trends Genet 3: 281–287CrossRefGoogle Scholar
  25. 25.
    Gruissem W (1989) Chloroplast RNA: Transcription and processing. In: Marcus A (ed) The biochemistry of plants, vol 15. Academic, New York, pp 151–191Google Scholar
  26. 26.
    Battey J, Clayton DA (1980) The transcription map of human mitochondrial DNA implicates transfer RNA excision as a major processing event. J Biol Chem 255: 11599–11606PubMedGoogle Scholar
  27. 27.
    Attardi G (1985) Animal mitochondrial DNA: An extreme example of genetic economy. Internatl Rev Cytol 93: 93–145CrossRefGoogle Scholar
  28. 28.
    Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447PubMedCrossRefGoogle Scholar
  29. 29.
    Morales MJ, Wise CA, Hollingsworth MJ, Martin NC (1989) Characterization of yeast mitochondrial RNase P: An intact RNA subunit is not essential for activity in vitro. Nucleic Acids Res 17: 6865–6881PubMedCrossRefGoogle Scholar
  30. 30.
    Sakonju S, Bogenhagen DF, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription I: The 5’ border of the region. Cell 19: 13–25PubMedCrossRefGoogle Scholar
  31. 31.
    Bogenhagen DF, Sakonju S, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription II The 3’ border of the region. Cell 19: 27–35PubMedCrossRefGoogle Scholar
  32. 32.
    Dingermann T, Sharp S, Schaack J, Söll D (1983) Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. J Biol Chem 258: 10395–10402PubMedGoogle Scholar
  33. 33.
    Geiduschek EP, Tocchini-Valentini GP (1988) Transcription by RNA polymerase III. Annu Rev Biochem 57: 873–914PubMedCrossRefGoogle Scholar
  34. 34.
    Temin HM (1989) Retrons in bacteria. Nature 339: 254–255PubMedCrossRefGoogle Scholar
  35. 35.
    Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43: 403–433PubMedCrossRefGoogle Scholar
  36. 36.
    Kikuchi Y, Ando Y, Shiba T (1986) Unusual priming mechanism of RNA-directed DIA synthesis in copia retrovirus-like particles of Drosophila. Nature 323: 824–826PubMedCrossRefGoogle Scholar
  37. 37.
    Finnegan DJ, Fawcett DH (1986) Transposable elements. In: Maclean N (ed) Drosophila melanogaster. Oxford surveys on eucaryotic genes, vol 3. Oxford University Press, Oxford, pp 1–62Google Scholar
  38. 38.
    Hohn T, Hohn B, Pfeiffer P (1985) Reverse transcription in CaMV. Trends Biochem Sci 10: 205–209CrossRefGoogle Scholar
  39. 39.
    Hohn B, Bala’zs E, Riiegg D, Hohn T (1986) Splicing of an intervening sequence from hybrid cauliflower mosaic viral RNA. EMBO J 5: 2759–2762PubMedGoogle Scholar
  40. 40.
    Covey SN, Turner DS (1986) Hairpin DNAs of cauliflower mosaic virus generated by reverse transcription in vivo. EMBO J 5: 2763–2768PubMedGoogle Scholar
  41. 41.
    Ganem D, Varmus HE (1987) The molecular biology of the hepatitis B viruses. Annu Rev Biochem 56: 651–693PubMedCrossRefGoogle Scholar
  42. 42.
    Kuiper MTR, Lambowitz AM (1988) A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55: 693–704PubMedCrossRefGoogle Scholar
  43. 43.
    Akins RA, Kelley RL, Lambowitz AM (1989) Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription. Mol Cell Biol 9: 678–691PubMedGoogle Scholar
  44. 44.
    Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331–337PubMedCrossRefGoogle Scholar
  45. 45.
    Shippen-Lentz D, Blackburn EH (1990) Functional evidence for an RNA template in telomerase. Science 247: 546–552PubMedCrossRefGoogle Scholar
  46. 46.
    Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch H (1981) The origin of genetic information. Sci Am 244 (4): 88–118PubMedCrossRefGoogle Scholar
  47. 47.
    Wintersberger U, Wintersberger E (1987) RNA makes DNA: A speculative view of the evolution of DNA replication mechanisms. Trends Genet, 3: 198–202CrossRefGoogle Scholar
  48. 48.
    Weiner AM (1988) Eucaryotic nuclear telomeres: Molecular fossils of the RNP world? Cell 52: 155–157PubMedCrossRefGoogle Scholar
  49. 49.
    Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleo- protein that synthesizes TTAGGG repeats. Cell 59: 521–529PubMedCrossRefGoogle Scholar
  50. 50.
    Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120: 33–53PubMedCrossRefGoogle Scholar
  51. 51.
    Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136PubMedCrossRefGoogle Scholar
  52. 52.
    Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, WuJ-R (1988) A highly conserved repetitive DNA sequence, ( TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622–6626PubMedCrossRefGoogle Scholar
  53. 53.
    Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucl Acids Res 17: 4611–4627PubMedCrossRefGoogle Scholar
  54. 54.
    Emery HS, Weiner AM (1981) An irregular satellite sequence is found at the termini of the linear extrachromosomal rDNA in Dictyostelium. Cell 26: 411–419PubMedCrossRefGoogle Scholar
  55. 55.
    Henderson E, Hardin CC, Walk SK, Tinoco I Jr, Blackburn EH (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine- guanine base pairs. Cell 51: 899–908PubMedCrossRefGoogle Scholar
  56. 56.
    Watson JD (1972) Origin of concatemeric T7 DNA. Nature New Biol 239: 197–201PubMedCrossRefGoogle Scholar
  57. 57.
    Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413PubMedCrossRefGoogle Scholar
  58. 58.
    Lundblad V, Blackburn EH (1990) RNA-dependent polymerase motifs in EST1: Tentative identification of a protein component of an essential yeast telomerase. Cell 60: 529–530PubMedCrossRefGoogle Scholar
  59. 59.
    Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine- rich motifs in DNA and its implications for meiosis. Nature 334: 364–6PubMedCrossRefGoogle Scholar
  60. 60.
    Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: The G quartet model. Cell 59: 871–880PubMedCrossRefGoogle Scholar
  61. 61.
    Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342: 825–829PubMedCrossRefGoogle Scholar
  62. 62.
    Lovejoy AO (1964) The great chain of being: A study of the history of an idea. Harvard University Press, CambridgeGoogle Scholar
  63. 63.
    Pace NR, Olsen GJ, Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45: 325–326PubMedCrossRefGoogle Scholar
  64. 64.
    Woese CR (1990) The “progenote”. Science 247: 789PubMedCrossRefGoogle Scholar
  65. 65.
    Strauss EG, Strauss JH (1983) Replication strategies of the single stranded RNA viruses of eukaryotes. In: Cooper M, Hofschneider PH, Koprowski H, Melchers F, Rott R, Schweiger HG, Vogt PK, Zinkernagel R (eds) Microbiology and immunology 105. Springer, Berlin, pp 2–98Google Scholar
  66. 66.
    Weiner AM (1987) Summary. Cold Spring Harbor Symposium. Quant Biol 52: 933–941Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Alan M. Weiner
    • 1
  • Nancy Maizels
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenUSA

Personalised recommendations