Early Biochemical Evolution: Speculations on the Biochemistry of Primitive Life

  • Tairo Oshima


Biochemical properties of thermophilic archaebacteria were investigated and compared with those of other archaebacteria, eubacteria, and eukaryotes. Based on these comparative studies, we were able to speculate on the biochemistry of primitive life. The author proposes that chromosomes of primitive cells from which the three kingdoms would have diverged were circular and smaller than those of E. coli. The evolution of membrane-bound, proton- translocating ATPase and the catabolic pathways of glucose are also discussed in relation to the divergence of the three major lineages of phylogeny.


Lyme Disease Primitive Cell Mycoplasma Hominis Initiator tRNA Methanosarcina Barkeri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kobayashi K, Oshima T, Yanagawa H (1989) Abiotic synthesis of amino acids by proton irradiation of a mixture of carbon monoxide, nitrogen, and water. Chem Lett: 1527–1530Google Scholar
  2. 2.
    Woese CR, Wolfe RS (1985) The bacteria vol 8: Archaebacteria. Academic, New YorkGoogle Scholar
  3. 3.
    Bode HR, Morowitz HJ (1967) Size and structure of theMycoplasma hominisH39 chromosome. J Mol Biol 23: 191–199PubMedCrossRefGoogle Scholar
  4. 4.
    Wake RG (1973) Circularity of theBacillus subtilischromosome and further studies on its bidirectional replication. J Mol Biol 77: 569–575PubMedCrossRefGoogle Scholar
  5. 5.
    Kauc L, Mitchell M, Goodgal SH (1989) Size and physical map of the chromosome ofHaemophilus influenzae. J Bacteriol 171: 2474–2479PubMedGoogle Scholar
  6. 6.
    Ferdows MS, Barbour AG (1989) Megabase-sized linear DNA in the bacteriumBorrelia burgdorferi: The Lyme disease agent. Proc Natl Acad Sci USA 86: 5969–5973PubMedCrossRefGoogle Scholar
  7. 7.
    Watson JD (1972) Origin of concatemeric T7 DNA. Nature New Biol 239: 197–201PubMedCrossRefGoogle Scholar
  8. 8.
    Weiner AM (1988) Eukaryotic nuclear telomeres: Molecular fossils of the RNP world? Cell 52: 155–157PubMedCrossRefGoogle Scholar
  9. 9.
    Yamagishi A, Oshima T (1990) Circular chromosomal DNA in the sulfur-dependent archaebacteriumSulfolobus acidocaldarius. Nucleic Acids Res 18: 1133–1136PubMedCrossRefGoogle Scholar
  10. 10.
    Noll KM (1989) Chromosome map of the thermophilic archaebacterium,Thermococcus celerJ Bacteriol 171: 6720–6725Google Scholar
  11. 11.
    Searcy DG, Doyle EK (1875) Characterization ofThermoplasma acidophilumdeoxyribonucleic acid. Intern J Syst Bacteriol 25: 286–289CrossRefGoogle Scholar
  12. 12.
    Mitchell RM, Loeblich LA, Klotz LC, Loeblich AR (1979) DNA organization ofMethanobacterium thermoautotrophicum. Science 204: 1082–1084PubMedCrossRefGoogle Scholar
  13. 13.
    Moore RL, McCarthy BJ (1969) Base sequence homology and renaturation studies of the deoxyribonucleic acid of extremely halophilic bacteria. J Bacteriol 99: 255–262PubMedGoogle Scholar
  14. 14.
    Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biocherm 54: 1015–1069CrossRefGoogle Scholar
  15. 15.
    Blaut M, Gottschalk G (1985) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen inMethanosarcina barkeri. Eur J Biochem 141: 217–222CrossRefGoogle Scholar
  16. 16.
    Konishi J, Wakagi T, Oshima T, Yoshida M (1987) Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium,Sulfolobus acidocaldarius. J Biochem 102: 1379–1387PubMedGoogle Scholar
  17. 17.
    Inatomi K, Eya S, Maeda M, Futai M (1989) Amino acid sequence of the a and p subunits ofMethanosarcina barkeriATPase deduced from cloned genes: Similarity to sub-units of eukaryotic vacuolar and F0F1-ATPase. J Biol Chem 264: 10954–10959PubMedGoogle Scholar
  18. 18.
    Hochstein LI, Kristjansson H, Altekar W (1987) The purification and subunit structure of a membrane-bound ATPase from the archaebacteriumHalobacterium saccharovorum. Biochem Biophys Res Commun 147: 295–300PubMedCrossRefGoogle Scholar
  19. 19.
    Nanba T, Mukohata Y (1987) A membrane-bound ATPase fromHalobacterium halobium: Purification and characterization. J Biochem 102: 591–598PubMedGoogle Scholar
  20. 20.
    Denda K, Konishi J, Oshima T, Date T, Yoshida M (1988) The membrane-associated ATPase fromSulfolobus acidocaldariusis distantly related to F1-ATPase as assessed from the primary structure of it’s a-subunit. J Biol Chem 263: 6012–6015PubMedGoogle Scholar
  21. 21.
    Gogarten JP, Kibak H, Ditrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) The evolution of the vacuolar H+-ATPase: Implications for the origin of the eukaryotes. Proc Natl Acad Sci USA 86: 6661–6665PubMedCrossRefGoogle Scholar
  22. 22.
    Danson MJ (1988) Archaebacteria: The comparative enzymology of their central metabolic pathways. Adv Microb Physiol 29: 165–231PubMedCrossRefGoogle Scholar
  23. 23.
    Kerscher L, Oesterhelt D (1982) Pyruvate:Ferredoxin oxidoreductase: New findings on an ancient enzyme. Trends Biochem Sci 7: 371–374CrossRefGoogle Scholar
  24. 24.
    Wakagi T, Oshima T (1988) A highly stable NADP-dependent isocitrate dehydrogenase fromThermus thermophilusHB8: Purification and general properties. Biochem Biophys Acta 990: 133–137Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Tairo Oshima
    • 1
  1. 1.Department of Life ScienceTokyo Institute of TechnologyNagatsuta, YokohamaJapan

Personalised recommendations