Evolution of Archaebacteria: Phylogenetic Relationships Among Archaebacteria, Eubacteria, and Eukaryotes

  • Takashi Miyata
  • Naoyuki Iwabe
  • Kei-ichi Kuma
  • Yu-ichi Kawanishi
  • Masami Hasegawa
  • Hirohisa Kishino
  • Yasuo Mukohata
  • Kunio Ihara
  • Syozo Osawa


All extant organisms are thought to be classified into three primary kingdoms (urkingdoms), eubacteria, archaebacteria, and eukaryotes. It is generally impossible to know the correct evolutionary relationships among the three urkingdoms from analysis based on a comparison of a single molecule from a variety of extant species, because the root of molecular phylogenetic tree inferred from such a comparison could not be determined uniquely. We overcame this difficulty by comparing pairs of duplicated genes, elongation factors Tu and G and the catalytic and noncatalytic subunits of ATPase, which are thought to have diverged by gene duplication before divergence of the urkingdoms. Using each protein pair, we inferred a composite phylogenetic tree with two clusters corresponding to different proteins, from which the evolutionary relationship among the urkingdoms is determined uniquely. The inferred composite trees has revealed that all the major groups of archaebacteria (extreme halophiles, extreme thermophiles and methanogens) are more closely related to eukaryotes than to eubacteria. Furthermore, branching patterns of the three major groups of archaebacteria and eukaryotes were examined in detail. It has been shown that the three archaebacterial groups possibly form a single cluster. Phylogenetic positions of three nodes leading to these four groups, however, are likely to be very close to one another.


Tree Topology Bootstrap Probability Composite Tree Methanosarcina Barkeri Extreme Thermophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090PubMedCrossRefGoogle Scholar
  2. 2.
    Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: Perspectives on the urkingdoms. Syst Appl Microbiol 7: 161–177PubMedCrossRefGoogle Scholar
  3. 3.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar
  4. 4.
    LakeJA, Henderson E, Oakes M, Clark MW (1984) Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81: 3786–3790PubMedCrossRefGoogle Scholar
  5. 5.
    LakeJA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186PubMedCrossRefGoogle Scholar
  6. 6.
    Gouy M, Li W-H (1989) Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339: 145–147PubMedCrossRefGoogle Scholar
  7. 7.
    Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4: 445–472PubMedGoogle Scholar
  8. 8.
    Piihler G, Leffers H, Gropp F, Palm P, Klenk H-P, Lottspeich F, Garrett RA, Zillig W (1989) Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic genome. Proc Natl Acad Sci USA 86: 4569–4573CrossRefGoogle Scholar
  9. 9.
    Hori H, and Osawa S (1979) Evolutional change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad USA 76: 381–385CrossRefGoogle Scholar
  10. 10.
    Osawa S, Hori H (1979) Molecular evolution of ribosomal components. In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes, Structure, Function and Genetics. University Park Press, Baltimore, pp 333–355Google Scholar
  11. 11.
    Lechner K, Böck A (1987) Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol Gen Genet 208: 523–528CrossRefGoogle Scholar
  12. 12.
    Lechner K, Heller G, Böck A (1988) Gene for the diphtheria toxin-susceptible elongation factor 2 from Methanococcus vannielii. Nucleic Acids Res 16: 7817–7826PubMedCrossRefGoogle Scholar
  13. 13.
    Berghofer B, Krockel L, Kortner C, Truss M, Schallenberg J, Klein A (1988) Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents. Nucleic Acids Res 16: 8113–8128PubMedCrossRefGoogle Scholar
  14. 14.
    Matheson AT, Yamaguchi M, Balch WE, Wolfe RS (1980) Sequence homologies in the N-terminal region of the ribosomal ‘A’ proteins from Methanobacterium thermoautotrophicum and Halobacterium cutirubrum. Biochem Biophys Acta 626: 162–169PubMedGoogle Scholar
  15. 15.
    Kimura M, Arndt E, Hatakeyama T, Hatakeyama T, Kimura J (1989) Ribosomal protein in halobacteria. Can J Microbiol 35: 195–199PubMedCrossRefGoogle Scholar
  16. 16.
    Auer J, Spicker G, Böck A (1989) Organization and structure of the Methanococcus transcriptional unit homologous to the Escherichia coli “Spectinomycin Operon.” J Mol Biol 209: 21–36Google Scholar
  17. 17.
    Denda K, Konishi J, Oshima T, Date T, Yoshida M (1988) The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to F1-ATPase as assessed from the primary structure of it’s α-subunit. J Biol Chem 263: 6012–6015PubMedGoogle Scholar
  18. 18.
    Denda K, Konishi J, Oshima T, Date T, Yoshida M (1988) Molecular cloning of the β-subunit of a possible non-F0F1 type ATPsynthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius.J Biol Chem 263: 17251–17254Google Scholar
  19. 19.
    Inatomi K, Eya S, Maeda M, Futai M (1989) Amino acid sequence of the a and p subunits of Methanosarcina barkeri ATPase deduced from cloned genes. J Biol Chem 264: 10954–10959PubMedGoogle Scholar
  20. 20.
    Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359PubMedCrossRefGoogle Scholar
  21. 21.
    Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) Evolution of the vacuolar H+-ATPase: Implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86: 6661–6665PubMedCrossRefGoogle Scholar
  22. 22.
    Mukohata Y, Ihara K, Kishino H, Hasegawa M, Iwabe N, Miyata T (1990) Close evolutionary relatedness of archaebacteria with eukaryotes. Proc Jpn Acad 66B: 63–67CrossRefGoogle Scholar
  23. 23.
    Baldacci G, Guinet F, Tillit J, Zaccai G, Recondo A-M (1990) Functional implications related to the gene structure of the elongation factor EF-Tu from Halobacterium marismortui. Nucleic Acids Res 18: 507–511PubMedCrossRefGoogle Scholar
  24. 24.
    Pokalsky AR, Hiatt WR, Ridge N, Rasmussen R, Houck CM, Shewmaker CK (1989) Structure and expression of elongation factor la in tomato. Nucleic Acids Res 17:4661– 4673Google Scholar
  25. 25.
    Montandon P-E, Stutz E (1990) Structure and expression of the Euglena gracilis nuclear gene coding for the translation elongation factor EF-la. Nucleic Acids Res 18: 75–82PubMedCrossRefGoogle Scholar
  26. 26.
    Loechel S, Inamine JM, Hu P-C (1989) Nucleotide sequence of the tuf gene from Mycoplasma genitalium. Nucleic Acids Res 17: 10127PubMedCrossRefGoogle Scholar
  27. 27.
    Itoh T (1989) Sequence analysis of the peptide-elongation factor EF-2 gene, downstream from those of ribosomal proteins H-S12 and H-S7, from the archaebacterial extreme halophile, Halobacterium halobium. Eur J Biochem 186: 213–219PubMedCrossRefGoogle Scholar
  28. 28.
    Grinblat Y, Brown NH, Kafatos FC (1989) Isolation and characterization of the Drosophila translation elongation factor 2 gene. Nucleic Acids Res 17: 7303–7314PubMedCrossRefGoogle Scholar
  29. 29.
    Toda K, Tasaka M, Mashima K, Kohno K, Uchida T, Takeuchi I (1989) Structure and expression of elongation factor 2 gene during development of Dictyostelium discoideum. J Biol Chem 264: 15489–15493PubMedGoogle Scholar
  30. 30.
    Yakhnin AV, Vorozheykina DP, Matvienko NI (1989) Nucleotide sequence of the Thermus thermophilus HB8 gene coding for elongation factor G. Nucleic Acids Res 17: 8863PubMedCrossRefGoogle Scholar
  31. 31.
    Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425PubMedGoogle Scholar
  32. 32.
    Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31: 151–160CrossRefGoogle Scholar
  33. 33.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17: 368–376PubMedCrossRefGoogle Scholar
  34. 34.
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  35. 35.
    Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29: 170–179PubMedCrossRefGoogle Scholar
  36. 36.
    Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791CrossRefGoogle Scholar
  37. 37.
    Hasegawa M, Iwabe N, Mukohata Y, Miyata T (1990) Close evolutionary relatedness of archaebacteria, Methanococcus and Halobacterium, to eukaryotes demonstrated by composite trees of elongation factors EF-Tu and EF-G: Eocyte tree is unlikely. Jpn J Genet 65: 109–114CrossRefGoogle Scholar
  38. 38.
    Van Valen L, Maiorana V C (1980) The archaebacteria and eukaryotic origins. Nature 287: 248–250PubMedCrossRefGoogle Scholar
  39. 39.
    Cavalier-Smith T (1987) The origin of eukaryote and archaebacterial cell. Ann NY Acad Sci 503: 17–54PubMedCrossRefGoogle Scholar
  40. 40.
    Iwabe N, Kuma K, Kishino H, Hasegawa M, Miyata T (to be published) Evolution of RNA polymerases and branching patterns of the three major groups of archaebacteria. J Mol EvolGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Takashi Miyata
  • Naoyuki Iwabe
  • Kei-ichi Kuma
  • Yu-ichi Kawanishi
    • 1
    • 2
  • Masami Hasegawa
  • Hirohisa Kishino
    • 3
  • Yasuo Mukohata
  • Kunio Ihara
  • Syozo Osawa
    • 4
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukoukaJapan
  2. 2.Department of Biophysics, Faculty of ScienceKyoto UniversityKyotoJapan
  3. 3.Institute of Statistical MathematicsMinato-ku, TokyoJapan
  4. 4.Department of Biology, Faculty of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations