Skip to main content

The Evolution of Cells

  • Chapter

Summary

The origin of cells was crucial to the evolution of life: by creating the first discrete organisms it vastly strengthened organismic selection, at the expense of genie and population (group) selection which would have dominated early evolution. There are four major sorts of cell, two bacterial (kingdoms Eubacteria and Archaebacteria) and two eukaryotic (superkingdoms Archezoa and Meta- karyota): their origins are the most significant examples of quantum evolution in the history of life. Ultrastructural, molecular and fossil evidence suggest that the first cells were eubacteria, and that archaebacteria and the primitively amito- chondrial archezoa both evolved from a wall-less mutant eubacterium. Subsequently a tetraciliated archezoan metamonad phagocytosed purple non-sulphur and Gram-positive bacteria (both eubacteria), converting them into mitochondria and peroxisomes respectively, creating the first metakaryote. Metakaryota comprise five kingdoms: Protozoa, Chromista, Fungi, Animalia, Plantae. Chloroplasts evolved from symbiotic cyanobacteria, probably once only, either in the ancestral metakaryote or in the common ancestor of dinoflagellates, green and red algae. A separate symbiosis involving a proteromonad–like protozoan host and an aberrantly pigmented dinoflagellate symbiont created the kingdom Chromista, with chloroplasts located inside the rough endoplasmic reticulum. Euglenoids also may have obtained their chloroplasts secondarily from a eukaryotic symbiont, but a direct inheritance from the ancestral metakaryote cannot yet be ruled out. There is no evidence for a symbiotic origin of cilia or eukaryotes; the most primitive eukaryotes may be the monociliated archezoan Archamoebae. The first eubacteria were probably Gram-negative photoheterotrophs with an outer membrane outside their plasma membrane: this outer membrane probably evolved into the outer membrane of mitochondria and chloroplasts, but was lost in the ancestor (s) of Posibacteria and Thermotoga. The first cell perhaps evolved by “gastrulation” of an inside-out-cell bearing ribosomes and chromosomes on its outer surface. Archaebacteria and eukaryotes probably evolved from a Thermotoga-like eubacterium after it lost the murein cell wall: the archaebacterial ancestor evolved a new wall and isoprenoidal ether lipids, whilst the eukaryote ancestor instead evolved an actin/microtubulule endoskeleton allowing phagotrophy, endomembranes, nuclei, and sex (i.e., syngamy and meiosis) to evolve. The mechanisms and significance of these megaevolutionary events are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanier RY (1970) Some aspects of the biology of cells and their possible evolutionary significance. Symp Soc Gen Microbiol 20: 1–38

    Google Scholar 

  2. Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463– 468

    Article  Google Scholar 

  3. Cavalier-Smith T (1987) The origin of eukaryote and archaebacterial cells. Ann NY Acad Sci 503: 17–54

    Article  PubMed  CAS  Google Scholar 

  4. Mereschkowsky C (1905) Uber Natur und Ursprung der Chromatophoren im Pflan- zenreiche. Biol Zentralbl 25: 593–604

    Google Scholar 

  5. Mereschkowsky C (1910) Theorie der Zwei Plasmaarten als Grundlage der Sym- biogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Zentralbl 30:278–303, 321–347, 353–367

    Google Scholar 

  6. Wright S (1949) Population structure and evolution. Proc Am Philos Soc 93: 471–478

    PubMed  CAS  Google Scholar 

  7. Hickey DA (1982) Selfish DNA: A sexually transmitted nuclear parasite. Genetics 101: 519–531

    PubMed  CAS  Google Scholar 

  8. Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Microbiol 42: 17–35

    CAS  Google Scholar 

  9. Cavalier-Smith T (1987) The origin of cells: A symbiosis between genes, catalysts and membranes. Cold Spring Harbor Symp Quant Biol 52: 805–824

    PubMed  CAS  Google Scholar 

  10. Cavalier-Smith T (1989) Systems of kingdoms. In: McGraw-Hill 1989 yearbook of science and technology, pp 175–179

    Google Scholar 

  11. Linnaeus C (1758) Systema naturae, edn 10. Tomus I, Stockholm

    Google Scholar 

  12. Woese CR, Wolfe RS (1985) Archaebacteria: The Urkingdom. In: Woese CR Wolfe RS (eds) The bacteria; archaebacteria. Academic, New York, pp 561–564

    Google Scholar 

  13. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090

    Article  PubMed  CAS  Google Scholar 

  14. Woese CR (1983) The primary lines of descent and the universal ancestor. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 209–233

    Google Scholar 

  15. Sharp PM, Li W (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28: 398–402

    Article  PubMed  CAS  Google Scholar 

  16. Hori HT, Itoh T, Osawa S (1982) The phylogenetic structure of the metabacteria. Zentralbl Bakteriol Mikrobiol Hyg [C] 3: 18–30

    CAS  Google Scholar 

  17. Pool R (1990) The third kingdom of life. Science 247: 158–160

    Article  PubMed  CAS  Google Scholar 

  18. Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II De Gruyter, Berlin, pp 1027— 1034

    Google Scholar 

  19. Margulis L (1970) The origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  20. Margulis L (1981) Symbiosis in cell evolution. Freeman, San Franciso

    Google Scholar 

  21. Cavalier-Smith T (1983) Endosymbiotic origin of the mitochondrial envelope. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. De Gruyter, Berlin, pp 265– 279

    Google Scholar 

  22. Margulis L (1988) Serial endosymbiotic theory (SET): Undulipodia, mitosis, and their microtubule systems preceded mitochondria. Endocyt Cel 5: 133–162

    Google Scholar 

  23. Chávez LA, Balamuth W, Gong T (1986) A light and electron microscopical study of a new, polymorphic free-living amoeba, Phreatamoeba balamuthi n. g., n. sp. J Protozool 33: 397–404

    PubMed  Google Scholar 

  24. Griffin JL (1988) Fine structure and taxonomic position of the giant amoeboid flagellate, Pelomyxa palustris. J Protozool 35: 300–314

    PubMed  CAS  Google Scholar 

  25. Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: An unusual ribosomal RNA from Giardia lamblia. Science 243: 75–77

    Article  PubMed  CAS  Google Scholar 

  26. Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8s rRNA. Nature 320: 287–288

    Article  PubMed  CAS  Google Scholar 

  27. Vossbrinck CR, Maddox JR, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414

    Article  PubMed  CAS  Google Scholar 

  28. Cavalier-Smith T (1987) The origin of Fungi and pseudofungi. Brit Mycol Soc Symp 13: 339–353

    Google Scholar 

  29. Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503: 55–71

    Article  PubMed  CAS  Google Scholar 

  30. Cavalier-Smith T (1990) Symbiotic origin of peroxisomes. In: Nardon P, Gianinazzi- Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV Institut National de la Recherche Agronomique, Paris, pp 515–521

    Google Scholar 

  31. Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65: 311–314

    Article  CAS  Google Scholar 

  32. Cavalier-Smith T (1991) Evolution of prokaryotic and eukaryotic cells. In: Bittar GE (ed) Foundations of medical cell biology, vol I. J.A.I., Greenwich, pp 221–278

    Google Scholar 

  33. Lindmark DG (1988) Giardia lamblia: Localization of hydrolase activities in lysosome- like organelles of trophozoites. Exp Parasitol 65:141–147

    Article  PubMed  CAS  Google Scholar 

  34. Guoy M, Li WH (1989) Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339: 145–147

    Article  Google Scholar 

  35. Cavalier-Smith T (1990) Microorganism megaevolution: Integrating the living and fossil evidence. Rev. Micropal 33 (3–4)

    Google Scholar 

  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  37. Britten RS (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398

    Article  PubMed  CAS  Google Scholar 

  38. Pugsley AP (1989) Protein targeting. Academic, San Diego

    Google Scholar 

  39. Dover GA (1987) DNA turnover and the molecular clock. J Mol Evol 26: 47–58

    Article  PubMed  CAS  Google Scholar 

  40. Gogarten, JP, Kibak H, Dittrich P, Taiz L, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Oshida M (1989) Evolution of the vacuolar H+- ATPase: Implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661– 6685

    Article  Google Scholar 

  41. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359

    Article  PubMed  CAS  Google Scholar 

  42. Woese CR (1979) A proposal concerning the origin of life on the planet earth. J Mol Evol 13: 95–101

    Article  PubMed  CAS  Google Scholar 

  43. Baltscheffsky H (1981) Stepwise molecular evolution of bacterial photosynthetic energy conversion. BioSystems 14: 49–56

    Article  PubMed  CAS  Google Scholar 

  44. Blobel G (1980) Intracellular membrane topogenesis. Proc Nat Acad Sci USA 77:1496– 1500

    Article  PubMed  Google Scholar 

  45. Cavalier-Smith T (1980) Cell compartmentation and the origin of eukaryotic membranous organelles. In: Schwemmler W, Schenk HEA (eds) Endocytobiology; Endosym– biosis and Cell Biology. De Gruyter, Berlin, pp 831–916

    Google Scholar 

  46. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144: 324–333

    Google Scholar 

  47. Cavalier-Smith T (1981) The origin and early evolution of the eukaryotic cell. In: Carlile MJ, Collins J, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Soc Gen Microbiol Symp 32, Cambridge University Press, Cambridge, pp 33–84

    Google Scholar 

  48. Cavalier-Smith T (1987) Bacterial DNA segregation: Its motors and positional control. J Theoret Biol 127: 361–372

    Article  CAS  Google Scholar 

  49. Van Valen VC, Maiorana V (1980) The Archaebacteria and eukaryotic origins. Nature 287: 248–250

    Article  PubMed  Google Scholar 

  50. Woese CR (1987) Macroevolution in the microscopic world. In: Patterson C (ed) Molecules and morphology in evolution: Conflict or compromise? Cambridge University Press, Cambridge, pp 177–202

    Google Scholar 

  51. Cavalier-Smith T (1987) Eukaryotes without mitochondria. Nature 326: 332–333

    Article  PubMed  CAS  Google Scholar 

  52. Cavalier-Smith T (1989) Archaebacteria and archezoa. Nature 339: 100–101

    Article  Google Scholar 

  53. Cavalier-Smith T (1987) Origin of the cell nucleus. BioEssays 9: 72–78

    Article  Google Scholar 

  54. De Duve C, Wattiaux R (1966) Functions of lysosomes. Ann Rev Physiol 28: 435–492

    Article  Google Scholar 

  55. Cavalier-Smith T (1988) Eukaryote cell evolution. In: Greuter W, Zimmer B (eds) Proceedings of the XIV international botanical congress. Koeltz, Konigstein and Taunus, pp 203–223

    Google Scholar 

  56. Cavalier-Smith T (1978) The evolutionary origin and phylogeny of microtubules, mitotic spindles, and eukaryote flagella. BioSystems 10: 93–114

    Article  PubMed  CAS  Google Scholar 

  57. Cavalier-Smith T (1982) The evolutionary origin and phylogeny of eukaryote flagella. In: Amos WB, Duckett JG (eds) Prokaryotic and Eukaryotic Flagella. 35th Symp Soc Exp Biol Cambridge University Press, Cambridge, pp 465–493

    Google Scholar 

  58. Hall JL, Ramanis Z, Luck, DJL (1989) Basal body/centriolar DNA: Molecular genetic studies in Chlamydomonas. Cell 59: 121–132

    Article  PubMed  CAS  Google Scholar 

  59. Bermudes D, Margulis L, Tzertzinis G (1987) Prokaryotic origin of undulipodia. Ann NY Acad Sci 306: 187–197

    Article  Google Scholar 

  60. Szathmary E (1987) Early evolution of microtubules and undulipodia. BioSystems 20: 115–131

    Article  PubMed  CAS  Google Scholar 

  61. Cavalier-Smith T (1990) Autogenous origin of eukaryotes but symbiotic origin of meta– karyotes. In: Nardon P, Gianinazzi–Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV, pp 571–574

    Google Scholar 

  62. Gray MW (1983) The bacterial ancestry of plastids and mitochondria. Bioscience 33: 693–699

    Article  CAS  Google Scholar 

  63. Schnepf E (1964) Zur Feinstructur von Geosiphon pyriforme ein Versuch zur Deutung Cytoplasmatischer Membranen und Kompartimente. Arch Mikrobiol 49: 112–131

    Article  Google Scholar 

  64. Cavalier-Smith T (1981) Eukaryote kingdoms: Seven or nine? Biosystems 14: 461–481

    Article  PubMed  CAS  Google Scholar 

  65. Cavalier-Smith T (1989) The kingdom Chromista. In: Green JC Leadbeater BSC, Diver WL The chromophyte algae: Problems and perspectives. Clarendon, Oxford, pp 381–407

    Google Scholar 

  66. Foissner W, Blatterer H, Foissner I (1988) The Hemimastigophora (Hemimastix amphikineta nov. gen., nov. spec.): A new protistan phylum from Gondwanian soils. Eur J Protistol 23: 361–383

    Article  Google Scholar 

  67. Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17: 289–306

    Article  Google Scholar 

  68. Turner S, Burger-Wiersma T, Giovannoni SJ, Mur CR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382

    Article  PubMed  CAS  Google Scholar 

  69. Cavalier-Smith T (1987) Glaucophyceae and the origin of plants. Evol Trends Plants 2: 75–78

    Google Scholar 

  70. Perasso R, Baroin A, Qu CH, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature 339: 142–144

    Article  PubMed  CAS  Google Scholar 

  71. Manodori A, Grossman AR (1990) Sequence homology between light harvesting polypeptides of plants and the diatom Phaeodactylum tricornutum. In: Baltscheffsky M (ed) Current research in photosynthesis, vol III, Kluwer, Dordrecht, pp 541–544

    Google Scholar 

  72. Cavalier-Smith T (1986) The kingdom Chromista: Origin and systematics. Prog Phyc Res 4: 309–347

    Google Scholar 

  73. Gibbs SP (1981) Chloroplasts of some groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–207

    Article  PubMed  CAS  Google Scholar 

  74. Cavalier-Smith T (1985) Cell volume and the evolution of eukaryotic genome size. In: Cavalier-Smith T ed The evolution of genome size. Wiley, Chichester, pp 105–182

    Google Scholar 

  75. Cavalier-Smith T (to be published) Coevolution of vertebrate genome, cell, and nuclear sizes. Boll Zool

    Google Scholar 

  76. Darnell JE, Doolittle WF (1986) Speculations on the early course of evolution. Proc Natl Acad Sci USA 83: 1271–1275

    Article  PubMed  CAS  Google Scholar 

  77. Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315: 283–284

    Article  PubMed  CAS  Google Scholar 

  78. Cavalier-Smith T (1988) The insertional origin of introns. Genome 30 (Suppl 1): 94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Cavalier-Smith, T. (1991). The Evolution of Cells. In: Osawa, S., Honjo, T. (eds) Evolution of Life. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68302-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68302-5_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68304-9

  • Online ISBN: 978-4-431-68302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics