The Evolution of Cells

  • Thomas Cavalier-Smith


The origin of cells was crucial to the evolution of life: by creating the first discrete organisms it vastly strengthened organismic selection, at the expense of genie and population (group) selection which would have dominated early evolution. There are four major sorts of cell, two bacterial (kingdoms Eubacteria and Archaebacteria) and two eukaryotic (superkingdoms Archezoa and Meta- karyota): their origins are the most significant examples of quantum evolution in the history of life. Ultrastructural, molecular and fossil evidence suggest that the first cells were eubacteria, and that archaebacteria and the primitively amito- chondrial archezoa both evolved from a wall-less mutant eubacterium. Subsequently a tetraciliated archezoan metamonad phagocytosed purple non-sulphur and Gram-positive bacteria (both eubacteria), converting them into mitochondria and peroxisomes respectively, creating the first metakaryote. Metakaryota comprise five kingdoms: Protozoa, Chromista, Fungi, Animalia, Plantae. Chloroplasts evolved from symbiotic cyanobacteria, probably once only, either in the ancestral metakaryote or in the common ancestor of dinoflagellates, green and red algae. A separate symbiosis involving a proteromonad–like protozoan host and an aberrantly pigmented dinoflagellate symbiont created the kingdom Chromista, with chloroplasts located inside the rough endoplasmic reticulum. Euglenoids also may have obtained their chloroplasts secondarily from a eukaryotic symbiont, but a direct inheritance from the ancestral metakaryote cannot yet be ruled out. There is no evidence for a symbiotic origin of cilia or eukaryotes; the most primitive eukaryotes may be the monociliated archezoan Archamoebae. The first eubacteria were probably Gram-negative photoheterotrophs with an outer membrane outside their plasma membrane: this outer membrane probably evolved into the outer membrane of mitochondria and chloroplasts, but was lost in the ancestor (s) of Posibacteria and Thermotoga. The first cell perhaps evolved by “gastrulation” of an inside-out-cell bearing ribosomes and chromosomes on its outer surface. Archaebacteria and eukaryotes probably evolved from a Thermotoga-like eubacterium after it lost the murein cell wall: the archaebacterial ancestor evolved a new wall and isoprenoidal ether lipids, whilst the eukaryote ancestor instead evolved an actin/microtubulule endoskeleton allowing phagotrophy, endomembranes, nuclei, and sex (i.e., syngamy and meiosis) to evolve. The mechanisms and significance of these megaevolutionary events are discussed.


Outer Membrane Endomembrane System rRNA Tree Acyl Ester Green Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanier RY (1970) Some aspects of the biology of cells and their possible evolutionary significance. Symp Soc Gen Microbiol 20: 1–38Google Scholar
  2. 2.
    Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463– 468CrossRefGoogle Scholar
  3. 3.
    Cavalier-Smith T (1987) The origin of eukaryote and archaebacterial cells. Ann NY Acad Sci 503: 17–54PubMedCrossRefGoogle Scholar
  4. 4.
    Mereschkowsky C (1905) Uber Natur und Ursprung der Chromatophoren im Pflan- zenreiche. Biol Zentralbl 25: 593–604Google Scholar
  5. 5.
    Mereschkowsky C (1910) Theorie der Zwei Plasmaarten als Grundlage der Sym- biogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Zentralbl 30:278–303, 321–347, 353–367Google Scholar
  6. 6.
    Wright S (1949) Population structure and evolution. Proc Am Philos Soc 93: 471–478PubMedGoogle Scholar
  7. 7.
    Hickey DA (1982) Selfish DNA: A sexually transmitted nuclear parasite. Genetics 101: 519–531PubMedGoogle Scholar
  8. 8.
    Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Microbiol 42: 17–35Google Scholar
  9. 9.
    Cavalier-Smith T (1987) The origin of cells: A symbiosis between genes, catalysts and membranes. Cold Spring Harbor Symp Quant Biol 52: 805–824PubMedGoogle Scholar
  10. 10.
    Cavalier-Smith T (1989) Systems of kingdoms. In: McGraw-Hill 1989 yearbook of science and technology, pp 175–179Google Scholar
  11. 11.
    Linnaeus C (1758) Systema naturae, edn 10. Tomus I, StockholmGoogle Scholar
  12. 12.
    Woese CR, Wolfe RS (1985) Archaebacteria: The Urkingdom. In: Woese CR Wolfe RS (eds) The bacteria; archaebacteria. Academic, New York, pp 561–564Google Scholar
  13. 13.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090PubMedCrossRefGoogle Scholar
  14. 14.
    Woese CR (1983) The primary lines of descent and the universal ancestor. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 209–233Google Scholar
  15. 15.
    Sharp PM, Li W (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28: 398–402PubMedCrossRefGoogle Scholar
  16. 16.
    Hori HT, Itoh T, Osawa S (1982) The phylogenetic structure of the metabacteria. Zentralbl Bakteriol Mikrobiol Hyg [C] 3: 18–30Google Scholar
  17. 17.
    Pool R (1990) The third kingdom of life. Science 247: 158–160PubMedCrossRefGoogle Scholar
  18. 18.
    Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II De Gruyter, Berlin, pp 1027— 1034Google Scholar
  19. 19.
    Margulis L (1970) The origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  20. 20.
    Margulis L (1981) Symbiosis in cell evolution. Freeman, San FrancisoGoogle Scholar
  21. 21.
    Cavalier-Smith T (1983) Endosymbiotic origin of the mitochondrial envelope. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. De Gruyter, Berlin, pp 265– 279Google Scholar
  22. 22.
    Margulis L (1988) Serial endosymbiotic theory (SET): Undulipodia, mitosis, and their microtubule systems preceded mitochondria. Endocyt Cel 5: 133–162Google Scholar
  23. 23.
    Chávez LA, Balamuth W, Gong T (1986) A light and electron microscopical study of a new, polymorphic free-living amoeba, Phreatamoeba balamuthi n. g., n. sp. J Protozool 33: 397–404PubMedGoogle Scholar
  24. 24.
    Griffin JL (1988) Fine structure and taxonomic position of the giant amoeboid flagellate, Pelomyxa palustris. J Protozool 35: 300–314PubMedGoogle Scholar
  25. 25.
    Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: An unusual ribosomal RNA from Giardia lamblia. Science 243: 75–77PubMedCrossRefGoogle Scholar
  26. 26.
    Vossbrinck CR, Woese CR (1986) Eukaryotic ribosomes that lack a 5.8s rRNA. Nature 320: 287–288PubMedCrossRefGoogle Scholar
  27. 27.
    Vossbrinck CR, Maddox JR, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414PubMedCrossRefGoogle Scholar
  28. 28.
    Cavalier-Smith T (1987) The origin of Fungi and pseudofungi. Brit Mycol Soc Symp 13: 339–353Google Scholar
  29. 29.
    Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann NY Acad Sci 503: 55–71PubMedCrossRefGoogle Scholar
  30. 30.
    Cavalier-Smith T (1990) Symbiotic origin of peroxisomes. In: Nardon P, Gianinazzi- Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV Institut National de la Recherche Agronomique, Paris, pp 515–521Google Scholar
  31. 31.
    Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65: 311–314CrossRefGoogle Scholar
  32. 32.
    Cavalier-Smith T (1991) Evolution of prokaryotic and eukaryotic cells. In: Bittar GE (ed) Foundations of medical cell biology, vol I. J.A.I., Greenwich, pp 221–278Google Scholar
  33. 33.
    Lindmark DG (1988) Giardia lamblia: Localization of hydrolase activities in lysosome- like organelles of trophozoites. Exp Parasitol 65:141–147PubMedCrossRefGoogle Scholar
  34. 34.
    Guoy M, Li WH (1989) Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339: 145–147CrossRefGoogle Scholar
  35. 35.
    Cavalier-Smith T (1990) Microorganism megaevolution: Integrating the living and fossil evidence. Rev. Micropal 33 (3–4)Google Scholar
  36. 36.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  37. 37.
    Britten RS (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398PubMedCrossRefGoogle Scholar
  38. 38.
    Pugsley AP (1989) Protein targeting. Academic, San DiegoGoogle Scholar
  39. 39.
    Dover GA (1987) DNA turnover and the molecular clock. J Mol Evol 26: 47–58PubMedCrossRefGoogle Scholar
  40. 40.
    Gogarten, JP, Kibak H, Dittrich P, Taiz L, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Oshida M (1989) Evolution of the vacuolar H+- ATPase: Implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661– 6685CrossRefGoogle Scholar
  41. 41.
    Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359PubMedCrossRefGoogle Scholar
  42. 42.
    Woese CR (1979) A proposal concerning the origin of life on the planet earth. J Mol Evol 13: 95–101PubMedCrossRefGoogle Scholar
  43. 43.
    Baltscheffsky H (1981) Stepwise molecular evolution of bacterial photosynthetic energy conversion. BioSystems 14: 49–56PubMedCrossRefGoogle Scholar
  44. 44.
    Blobel G (1980) Intracellular membrane topogenesis. Proc Nat Acad Sci USA 77:1496– 1500PubMedCrossRefGoogle Scholar
  45. 45.
    Cavalier-Smith T (1980) Cell compartmentation and the origin of eukaryotic membranous organelles. In: Schwemmler W, Schenk HEA (eds) Endocytobiology; Endosym– biosis and Cell Biology. De Gruyter, Berlin, pp 831–916Google Scholar
  46. 46.
    Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144: 324–333Google Scholar
  47. 47.
    Cavalier-Smith T (1981) The origin and early evolution of the eukaryotic cell. In: Carlile MJ, Collins J, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Soc Gen Microbiol Symp 32, Cambridge University Press, Cambridge, pp 33–84Google Scholar
  48. 48.
    Cavalier-Smith T (1987) Bacterial DNA segregation: Its motors and positional control. J Theoret Biol 127: 361–372CrossRefGoogle Scholar
  49. 49.
    Van Valen VC, Maiorana V (1980) The Archaebacteria and eukaryotic origins. Nature 287: 248–250PubMedCrossRefGoogle Scholar
  50. 50.
    Woese CR (1987) Macroevolution in the microscopic world. In: Patterson C (ed) Molecules and morphology in evolution: Conflict or compromise? Cambridge University Press, Cambridge, pp 177–202Google Scholar
  51. 51.
    Cavalier-Smith T (1987) Eukaryotes without mitochondria. Nature 326: 332–333PubMedCrossRefGoogle Scholar
  52. 52.
    Cavalier-Smith T (1989) Archaebacteria and archezoa. Nature 339: 100–101CrossRefGoogle Scholar
  53. 53.
    Cavalier-Smith T (1987) Origin of the cell nucleus. BioEssays 9: 72–78CrossRefGoogle Scholar
  54. 54.
    De Duve C, Wattiaux R (1966) Functions of lysosomes. Ann Rev Physiol 28: 435–492CrossRefGoogle Scholar
  55. 55.
    Cavalier-Smith T (1988) Eukaryote cell evolution. In: Greuter W, Zimmer B (eds) Proceedings of the XIV international botanical congress. Koeltz, Konigstein and Taunus, pp 203–223Google Scholar
  56. 56.
    Cavalier-Smith T (1978) The evolutionary origin and phylogeny of microtubules, mitotic spindles, and eukaryote flagella. BioSystems 10: 93–114PubMedCrossRefGoogle Scholar
  57. 57.
    Cavalier-Smith T (1982) The evolutionary origin and phylogeny of eukaryote flagella. In: Amos WB, Duckett JG (eds) Prokaryotic and Eukaryotic Flagella. 35th Symp Soc Exp Biol Cambridge University Press, Cambridge, pp 465–493Google Scholar
  58. 58.
    Hall JL, Ramanis Z, Luck, DJL (1989) Basal body/centriolar DNA: Molecular genetic studies in Chlamydomonas. Cell 59: 121–132PubMedCrossRefGoogle Scholar
  59. 59.
    Bermudes D, Margulis L, Tzertzinis G (1987) Prokaryotic origin of undulipodia. Ann NY Acad Sci 306: 187–197CrossRefGoogle Scholar
  60. 60.
    Szathmary E (1987) Early evolution of microtubules and undulipodia. BioSystems 20: 115–131PubMedCrossRefGoogle Scholar
  61. 61.
    Cavalier-Smith T (1990) Autogenous origin of eukaryotes but symbiotic origin of meta– karyotes. In: Nardon P, Gianinazzi–Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV, pp 571–574Google Scholar
  62. 62.
    Gray MW (1983) The bacterial ancestry of plastids and mitochondria. Bioscience 33: 693–699CrossRefGoogle Scholar
  63. 63.
    Schnepf E (1964) Zur Feinstructur von Geosiphon pyriforme ein Versuch zur Deutung Cytoplasmatischer Membranen und Kompartimente. Arch Mikrobiol 49: 112–131CrossRefGoogle Scholar
  64. 64.
    Cavalier-Smith T (1981) Eukaryote kingdoms: Seven or nine? Biosystems 14: 461–481PubMedCrossRefGoogle Scholar
  65. 65.
    Cavalier-Smith T (1989) The kingdom Chromista. In: Green JC Leadbeater BSC, Diver WL The chromophyte algae: Problems and perspectives. Clarendon, Oxford, pp 381–407Google Scholar
  66. 66.
    Foissner W, Blatterer H, Foissner I (1988) The Hemimastigophora (Hemimastix amphikineta nov. gen., nov. spec.): A new protistan phylum from Gondwanian soils. Eur J Protistol 23: 361–383CrossRefGoogle Scholar
  67. 67.
    Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17: 289–306CrossRefGoogle Scholar
  68. 68.
    Turner S, Burger-Wiersma T, Giovannoni SJ, Mur CR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382PubMedCrossRefGoogle Scholar
  69. 69.
    Cavalier-Smith T (1987) Glaucophyceae and the origin of plants. Evol Trends Plants 2: 75–78Google Scholar
  70. 70.
    Perasso R, Baroin A, Qu CH, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature 339: 142–144PubMedCrossRefGoogle Scholar
  71. 71.
    Manodori A, Grossman AR (1990) Sequence homology between light harvesting polypeptides of plants and the diatom Phaeodactylum tricornutum. In: Baltscheffsky M (ed) Current research in photosynthesis, vol III, Kluwer, Dordrecht, pp 541–544Google Scholar
  72. 72.
    Cavalier-Smith T (1986) The kingdom Chromista: Origin and systematics. Prog Phyc Res 4: 309–347Google Scholar
  73. 73.
    Gibbs SP (1981) Chloroplasts of some groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–207PubMedCrossRefGoogle Scholar
  74. 74.
    Cavalier-Smith T (1985) Cell volume and the evolution of eukaryotic genome size. In: Cavalier-Smith T ed The evolution of genome size. Wiley, Chichester, pp 105–182Google Scholar
  75. 75.
    Cavalier-Smith T (to be published) Coevolution of vertebrate genome, cell, and nuclear sizes. Boll ZoolGoogle Scholar
  76. 76.
    Darnell JE, Doolittle WF (1986) Speculations on the early course of evolution. Proc Natl Acad Sci USA 83: 1271–1275PubMedCrossRefGoogle Scholar
  77. 77.
    Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315: 283–284PubMedCrossRefGoogle Scholar
  78. 78.
    Cavalier-Smith T (1988) The insertional origin of introns. Genome 30 (Suppl 1): 94Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Thomas Cavalier-Smith
    • 1
  1. 1.Department of BotanyThe University of British ColumbiaVancouverCanada

Personalised recommendations