Skip to main content

Comparing Life Histories

  • Chapter
Evolution of Life

Summary

Traditional interpretations of life history diversity view reproductive rates primarily as consequences of species differences in body size or some other key limiting variable. A more useful approach for understanding life history diversity is to combine optimality theory with comparative data on fertility and mortality schedules, which are likely to vary with habitat. Differences in body size are important in so far as they influence those schedules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Law R (1979) Ecological determinants in the evolution of life histories. In: Anderson RM, Turner BD, Taylor LR (eds) Population dynamics. Blackwell, Oxford, pp 81– 104

    Google Scholar 

  2. Bonner JT (1965) Size and cycle: An essay in the structure of biology. Princeton University Press, Princeton

    Google Scholar 

  3. Harvey PH, Read AF (1988) How and why do mammalian life histories vary? In: Boyce MS (ed) Evolution of life histories: Pattern and process from Mammals. Yale University Press, New Haven, pp 213–232

    Google Scholar 

  4. Huxley JS (1932) Problems of relative growth. Methuen, London

    Google Scholar 

  5. Western D, Ssemakula J (1982) Life history patterns in birds and mammals and their evolutionary interpretation. Oecologia 54: 281–290

    Article  Google Scholar 

  6. Lindstedt SL, Swain SD (1988) How and why do mammalian life histories vary? In Boyce MS (ed) Evolution of life histories: Pattern and process from mammals. Yale University Press, New Haven, pp 93–105

    Google Scholar 

  7. Harvey PH, Read AF, Promislow DEL (1989) Life histories variation in placental mammals: Unifying the data with the theory. In: Harvey PH, Partridge L (eds) Oxford surveys in evolutionary biology, 6. Oxford University Press, Oxford, pp 13–31

    Google Scholar 

  8. Sacher GA (1959) Relationship of lifespan to brain weight and body weight in mammals. In: Wolstenholme GEW, O’Connor M, C.I.B.A. foundation symposium on the lifespan of animals. Little, Brown and Co., Boston, pp 115–133

    Google Scholar 

  9. Economos AC (1980) Brain–lifespan conjecture: A re-evaluation of the evidence. Gerontology 26: 82–89

    Article  PubMed  CAS  Google Scholar 

  10. Bennett PM, Harvey PH (1985) Brain size, development and metabolism in birds and mammals. J Zool (London) 207: 491–509

    Article  Google Scholar 

  11. Bennett PM, Harvey PH (1985) Relative brain size and ecology in birds. J Zool (London) 207: 491–509

    Article  Google Scholar 

  12. Millar JS (1977) Adaptive features of mammalian reproduction. Evolution 31: 370–386

    Article  Google Scholar 

  13. Millar JS (1984) The role of design constraints in the evolution of mammalian reproductive rates. Acta Zool Fen 171: 133–136

    Google Scholar 

  14. Case TJ (1978) On the evolution and adaptive significance of post-natal growth in terrestrial vertebrates. Q Rev Biol 53: 243–282

    Article  PubMed  CAS  Google Scholar 

  15. Sacher GA (1978) Longevity and ageing in verebrate evolution. Biosci Rep 28: 297–301

    Google Scholar 

  16. McNab BK (1980) Food habits, energetics and population biology of mammals. Am Naturalist 116: 106–124

    Article  Google Scholar 

  17. McNab BK (1983) Energetics, body size, and the limits to endothermyj Zool (London) 199: 1–29

    Google Scholar 

  18. McNab BK (1986) Food habits, energetics and reproduction of marsupials. J Zool (London) 208: 595–614

    Article  Google Scholar 

  19. Hennemann WW (1983) Relationship among body mass, metabolic rate and the intrinsic rate of increase in mammals. Oecologia 56: 104–108

    Article  Google Scholar 

  20. Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58: 495–512

    Article  PubMed  CAS  Google Scholar 

  21. Peters RH (1983) The ecological implications of body size. Cambridge Universtity Press, Cambridge

    Google Scholar 

  22. Calder WA (1984) Size, function and life history. Harvard University Press, Boston

    Google Scholar 

  23. Swihart RK (1984) Body size, breeding season length and life history tactics of lago-morphs. Oikos 43: 282–290

    Article  Google Scholar 

  24. Harvey PH, Pagel MD, Rees J A (1990) Mammalian metabolism and life histories. Am Naturalist (in press)

    Google Scholar 

  25. Trevelyan R, Harvey PH, Pagel MD (1990) Metabolic rates and life histories in birds. Func Ecol 4: 135–141

    Article  Google Scholar 

  26. Clutton-Brock TH, Harvey PH (1983) The functional significance of variation in body size among mammals. In: Eisenberg JF, Kleiman DG (eds) Advances in the study of Mammalian Behavior. American Society of Mammalogists, New York

    Google Scholar 

  27. Harvey PH, Zammuto RM (1985) Patterns of mortality and age at first reproduction in natural populations of mammals. Nature 315: 319–320

    Article  PubMed  CAS  Google Scholar 

  28. Sutherland WJ, Grafen A, Harvey PH (1986) Life history correlations and demography. Nature 320: 88

    Article  Google Scholar 

  29. Saether BE (1988) Evolutionary adjustment of reproductive traits to survival rates in European birds. Nature 331: 616–617

    Article  PubMed  CAS  Google Scholar 

  30. Bennett PM, Harvey PH (1988) How fecundity balances mortality in birds. Nature 333: 216

    Article  Google Scholar 

  31. Promislow DEL, Harvey PH (1990) Living fast and dying young: A comparative analysis of life history variation among mammals. J Zool (London) 220: 417–437

    Article  Google Scholar 

  32. Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29: 103–137

    Article  PubMed  CAS  Google Scholar 

  33. Sade DS, Cushing K, Cushing P, DunaifJ, Fingueroa A, Kaplan JR,Lauer C, Rhodes D, Schneider J (1976) Population dynamics in relation to social structure on Cayo Santiago. Yearbook Phys Anthrop 20: 253–262

    Google Scholar 

  34. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28: 1140–1162

    Article  Google Scholar 

  35. LeBreton JD (1977) Multinomial method to estimate survival rate from bird band return: Some complements to the age–dependent method. Biometrie-Praximetrie 17: 145–161

    Google Scholar 

  36. Lakhani KH, Newton I (1985) Estimating age-specific survival rates from ringing recoveries: can it be done? J Anim Ecol 52: 83–91

    Article  Google Scholar 

  37. Anderson DR, Burnham KP, White GC (1985) Problems in estimating age-specific survival rates from recovery data of birds ringed as young. J Anim Ecol 54: 89–98

    Article  Google Scholar 

  38. Law R (1979) The cost of reproduction in annual meadow grass. Am Naturalist 113:3– 16

    Google Scholar 

  39. Ashmole NP (1963) The regulation of numbers of oceanic birds. The Ibis 103b:458– 473

    Google Scholar 

  40. WootonJT (1987) The effects of body mass, phylogeny, habitat, and trophic level on mammalian age at first reproduction. Evolution 41: 732–749

    Article  Google Scholar 

  41. Read AF, Harvey PH (1989) Life history differences among the eutherian radiations. J Zool (London) 219: 329–353

    Article  Google Scholar 

  42. Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  43. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46: 337–365

    Article  Google Scholar 

  44. Southwood TRE (1988) Tactics, strategies and templets. Oikos 52: 3–18

    Article  Google Scholar 

  45. Mace GM (1979) The evolutionary ecology of small mammals. PhD thesis, University of Sussex, Brighton

    Google Scholar 

  46. Harvey PH, Clutton-Brock T H (1985) Life history variation in primates. Evolution 39: 559–581

    Article  Google Scholar 

  47. Gittleman JL (1986) Carnivore life history patterns: Allometric, phylogenetic and ecological associations. Am Naturalist 127: 744–771

    Article  Google Scholar 

  48. Ross CR (1987) The intrinsic rate of natural increase and reproductive effort in primates. J Zool (London) 214: 199–220

    Article  Google Scholar 

  49. Roughgarden J (1971) Density-dependent natural selection. Ecology 52: 453–468

    Article  Google Scholar 

  50. Charlesworth B (1980) Evolution in age–structured populations. Cambridge University Press, Cambridge

    Google Scholar 

  51. Pianka ER (1970) On r- and K-selection. Am Naturalist 104: 592–596

    Article  Google Scholar 

  52. Boyce MS (1984) Restitution of r- and K-selection as a model of density dependent natural selection. Annu Rev Ecol Syst 15: 427–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Harvey, P.H. (1991). Comparing Life Histories. In: Osawa, S., Honjo, T. (eds) Evolution of Life. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68302-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68302-5_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68304-9

  • Online ISBN: 978-4-431-68302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics