Skip to main content

Evolution of Organellar Genomes

  • Chapter
Evolution of Life

Summary

In the plant kingdom, the endosymbiotic event of a mitochondrial ancestor probably happened first to plant cell progenitors followed by the endosymbiosis of a chloroplast ancestor, namely cyanobacteria. In this paper we describe the characterization of plant mitochondrial genome focussing on (1) the complexity of plant mitochondrial genomes, (2) the genetic codes utilized in plant mitochondrial genomes, (3) the properties of open reading frames encoded by introns (group I and group II) of plant mitochondrial genes, and (4) RNA editing which has been reported in wheat mitochondrial genome (C to U conversion), and (5) evolutionary events of gene migration from mitochondrial and chloroplast genomes to nuclear genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ozeki H, Ohyama K, Inokuchi H, Fukuzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Genetic system of chloroplasts. Cold Spring Harbor Symp Quant Biol, volume LII: 791–804

    Google Scholar 

  2. Ozeki H, Umesono K, Inokuchi H, Kohchi T, Ohyama K (1989) The chloroplast genome of plants: A unique origin. Genome 31: 169–174

    Article  Google Scholar 

  3. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  4. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  5. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194

    Google Scholar 

  6. Gray MW (1988) Organelle origins and ribosomal RNA. Biochem Cell Biol 66: 325 - 348

    Article  PubMed  CAS  Google Scholar 

  7. Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440

    Article  CAS  Google Scholar 

  8. Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11: 565–570

    Article  PubMed  CAS  Google Scholar 

  9. Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77: 3167–3170

    Article  PubMed  CAS  Google Scholar 

  10. Anderson S, Bankier AT, Barrell BG, Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    Article  PubMed  CAS  Google Scholar 

  11. Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28: 271–278

    Article  PubMed  CAS  Google Scholar 

  12. Osawa S, Ohama T, Jukes TH, Watanabe K, Yokoyama S (1989) Evolution of the mitochondrial genetic code II: Reassignment of codon AUA from isoleucine to methionine. J Mol Evol 29: 373–380

    Article  PubMed  CAS  Google Scholar 

  13. Osawa S, Collins D, Ohama T, Jukes TH, Watanabe K (1990) Evolution of the mitochondrial genetic code III: Reassignment of CUN codons from leucine to threonine during evolution of yeast mitochondria. J Mol Evol 30: 322–328

    Article  PubMed  CAS  Google Scholar 

  14. Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255: 11927–11941

    PubMed  CAS  Google Scholar 

  15. Isaac PG, Jones VP, Leaver CJ (1985) The maize cytochrome c oxidase subunit I gene: Sequence, expression, and rearrangement in cytoplasmic male sterile plants. EMBO J 4: 1617–1623

    PubMed  CAS  Google Scholar 

  16. Wintz H, Chen H-C, Pillay DTN (1988) Presence of a chloroplast-like elongator tRNAMet gene in the mitochondrial genomes of soybean and Arabidopsis thaliana. Curr Genet 13: 255–260

    Article  PubMed  CAS  Google Scholar 

  17. Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698–702

    Article  PubMed  CAS  Google Scholar 

  18. Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP (1983) An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35: 733–742

    Article  PubMed  CAS  Google Scholar 

  19. Michel F, Lang BF (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptase of retroviruses. Nature 316: 641–643

    Article  PubMed  CAS  Google Scholar 

  20. Shaw JM, Feagin JE, Stuart K, Simpson L (1988) Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequence and AUG initiation codons. Cell 53: 401–411

    Article  PubMed  CAS  Google Scholar 

  21. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50: 831–840

    Article  PubMed  CAS  Google Scholar 

  22. Fox TD, Leaver CJ (1981) The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26: 315–323

    Article  PubMed  CAS  Google Scholar 

  23. Gualberto JM, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341: 660–662

    Article  PubMed  CAS  Google Scholar 

  24. Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341: 662–666

    Article  PubMed  CAS  Google Scholar 

  25. Miyata T, Miyazawa S, Yasunaga T (1979) Two types of amino acid substitutions in protein evolution. J Mol Evol 12: 219–236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Ohyama, K. et al. (1991). Evolution of Organellar Genomes. In: Osawa, S., Honjo, T. (eds) Evolution of Life. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68302-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68302-5_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68304-9

  • Online ISBN: 978-4-431-68302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics