Advertisement

Evolution of Organellar Genomes

  • Kanji Ohyama
  • Yutaka Ogura
  • Kenji Oda
  • Katsuyuki Yamato
  • Ehji Ohta
  • Yasukazu Nakamura
  • Miho Takemura
  • Naoko Nozato
  • Kinya Akashi
  • Takeshi Kanegae
  • Yasuyuki Yamada

Summary

In the plant kingdom, the endosymbiotic event of a mitochondrial ancestor probably happened first to plant cell progenitors followed by the endosymbiosis of a chloroplast ancestor, namely cyanobacteria. In this paper we describe the characterization of plant mitochondrial genome focussing on (1) the complexity of plant mitochondrial genomes, (2) the genetic codes utilized in plant mitochondrial genomes, (3) the properties of open reading frames encoded by introns (group I and group II) of plant mitochondrial genes, and (4) RNA editing which has been reported in wheat mitochondrial genome (C to U conversion), and (5) evolutionary events of gene migration from mitochondrial and chloroplast genomes to nuclear genomes.

Keywords

Mitochondrial Genome Chloroplast Genome Organellar Genome Angiospermous Plant Plant Mitochondrial Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ozeki H, Ohyama K, Inokuchi H, Fukuzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Genetic system of chloroplasts. Cold Spring Harbor Symp Quant Biol, volume LII: 791–804Google Scholar
  2. 2.
    Ozeki H, Umesono K, Inokuchi H, Kohchi T, Ohyama K (1989) The chloroplast genome of plants: A unique origin. Genome 31: 169–174CrossRefGoogle Scholar
  3. 3.
    Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574CrossRefGoogle Scholar
  4. 4.
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J 5: 2043–2049PubMedGoogle Scholar
  5. 5.
    Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194Google Scholar
  6. 6.
    Gray MW (1988) Organelle origins and ribosomal RNA. Biochem Cell Biol 66: 325 - 348PubMedCrossRefGoogle Scholar
  7. 7.
    Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440CrossRefGoogle Scholar
  8. 8.
    Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11: 565–570PubMedCrossRefGoogle Scholar
  9. 9.
    Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77: 3167–3170PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson S, Bankier AT, Barrell BG, Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465PubMedCrossRefGoogle Scholar
  11. 11.
    Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28: 271–278PubMedCrossRefGoogle Scholar
  12. 12.
    Osawa S, Ohama T, Jukes TH, Watanabe K, Yokoyama S (1989) Evolution of the mitochondrial genetic code II: Reassignment of codon AUA from isoleucine to methionine. J Mol Evol 29: 373–380PubMedCrossRefGoogle Scholar
  13. 13.
    Osawa S, Collins D, Ohama T, Jukes TH, Watanabe K (1990) Evolution of the mitochondrial genetic code III: Reassignment of CUN codons from leucine to threonine during evolution of yeast mitochondria. J Mol Evol 30: 322–328PubMedCrossRefGoogle Scholar
  14. 14.
    Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J Biol Chem 255: 11927–11941PubMedGoogle Scholar
  15. 15.
    Isaac PG, Jones VP, Leaver CJ (1985) The maize cytochrome c oxidase subunit I gene: Sequence, expression, and rearrangement in cytoplasmic male sterile plants. EMBO J 4: 1617–1623PubMedGoogle Scholar
  16. 16.
    Wintz H, Chen H-C, Pillay DTN (1988) Presence of a chloroplast-like elongator tRNAMet gene in the mitochondrial genomes of soybean and Arabidopsis thaliana. Curr Genet 13: 255–260PubMedCrossRefGoogle Scholar
  17. 17.
    Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698–702PubMedCrossRefGoogle Scholar
  18. 18.
    Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP (1983) An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35: 733–742PubMedCrossRefGoogle Scholar
  19. 19.
    Michel F, Lang BF (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptase of retroviruses. Nature 316: 641–643PubMedCrossRefGoogle Scholar
  20. 20.
    Shaw JM, Feagin JE, Stuart K, Simpson L (1988) Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequence and AUG initiation codons. Cell 53: 401–411PubMedCrossRefGoogle Scholar
  21. 21.
    Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50: 831–840PubMedCrossRefGoogle Scholar
  22. 22.
    Fox TD, Leaver CJ (1981) The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26: 315–323PubMedCrossRefGoogle Scholar
  23. 23.
    Gualberto JM, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341: 660–662PubMedCrossRefGoogle Scholar
  24. 24.
    Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341: 662–666PubMedCrossRefGoogle Scholar
  25. 25.
    Miyata T, Miyazawa S, Yasunaga T (1979) Two types of amino acid substitutions in protein evolution. J Mol Evol 12: 219–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Kanji Ohyama
    • 1
  • Yutaka Ogura
    • 1
  • Kenji Oda
    • 1
  • Katsuyuki Yamato
    • 1
  • Ehji Ohta
    • 1
  • Yasukazu Nakamura
    • 1
  • Miho Takemura
    • 1
  • Naoko Nozato
    • 1
  • Kinya Akashi
    • 1
  • Takeshi Kanegae
    • 1
  • Yasuyuki Yamada
    • 1
  1. 1.Department of Agricultural Chemistry, Faculty of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations