Advertisement

Mechanism of Eosinophilia in Parasitic Infection with Special Emphasis on the Eosinophil Chemotactic Lymphokines Directed Against Different Maturation Stages of Eosinophils

  • Y. Nawa
  • M. Owhashi
  • H. Maruyama

Abstract

In this review, we have demonstrated three major facets of the eosinophilic mechanism in parasitic infections. Firstly, eosinophilia is primarily a matter of cell differentiation and/or maturation from hemopoietic stem cells. During infections with tissue-invading parasites, large numbers of pluripotent hemopoietic stem cells are generated, and mobilized to extramedullary hemopoietic sites such as the liver, where they become mature eosinophils in response to the increased demand.

Keywords

Parasitic Infection Schistosoma Japonicum Hemopoietic Stem Cell Mouse Bone Marrow Cell Neutrophil Chemotactic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartelmez SH, Dodge WH, Mahmoud AAF, Bass DA (1989) Stimulation of eosinophil production in vitro by eosinophilopoietin and spleen-cell-derived eosinophil growth-stimulating factor. Blood 56: 706–711Google Scholar
  2. 2.
    Basten A, Beeson PB (1969) Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med 131: 1288–1305CrossRefGoogle Scholar
  3. 3.
    Beeson PB, Bass DA (1977) Life cycle. In Smith LH Jr. (eds), The eosinophil. Major problems in internal medicine XIV, Saunders, Philadelphia, pp. 3–9Google Scholar
  4. 4.
    Blomjous FJEM,Elgersma A, Kruzinga W, Ruitenburg EJ (1986) Thymus independence of eosinophilia induced by a non-parasite antigen. Int Archs Allergy Appl. Immun 79: 376–379CrossRefGoogle Scholar
  5. 5.
    Colley DG, James SL (1979) Participation of eosinophils in immunological systems. In Gupta S, Good RA (eds), Cellular, molecular, and clinical aspects of allergic disorders. Comprehensive Immunology 6, Plenum, New York, pp. 55–86Google Scholar
  6. 6.
    Boggs SS, Wilson SM, Smith WW (1973) Effects of endotoxin on hematopoiesis in irradiated and nonirradiated W/Wv mice. Radiat Res 56: 481–493PubMedCrossRefGoogle Scholar
  7. 7.
    Borojevic R, Stocker S, Grimaud JA (1981) Hepatic eosinophil granulocytopoiesis in murine experimental schistosomiasis mansoni. Br J Exp Pathol 62: 480–489PubMedGoogle Scholar
  8. 8.
    Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp BioI Med Sci 44: 287–300CrossRefGoogle Scholar
  9. 9.
    Burgess A, Nicola N (1983) Growth factors and stem cells Academic Press, Sydney, pp 43–91Google Scholar
  10. 10.
    Byram JE, Imohiosen EAE, Von Lichtenberg F (1978) Tissue eosinophil proliferation and maturation in schistosome-infected mice and hamsters. Am J Trop Med Hyg 27:267–270PubMedGoogle Scholar
  11. 11.
    Capron M, Capron A, Dessaint JP, Torpier G, Johansson SGO, Prin L (1981) Fc receptors for IgE on human and rat eosinophils. J Immunol 126: 2087–2092PubMedGoogle Scholar
  12. 12.
    Fischkoff SA, Pollak A, Gleich GJ, Testa JR, Misawa S, Reber TJ (1984) Eosinophilic differentiation of the human promyelocytic leukemia cell line HL-60. J Exp Med 160: 179–196PubMedCrossRefGoogle Scholar
  13. 13.
    Goetzl EJ, Austen KF (1976) Structural determinants of the eosinophil chemotactic activity of the acidic tetrapeptides of eosinophil chemotactic factor of anaphylaxis. J Exp Med 144: 1424–1437PubMedCrossRefGoogle Scholar
  14. 14.
    Goetzl EJ, Foster DW, Goldman DW (1983) Receptor-directed modulation of human eosinophil function. In Yoshida T, Torisu M (eds), Immunobiology ofthe eosinophil, Elsevier, New York, pp. 61–76Google Scholar
  15. 15.
    Grimaud JA, Borojevic R (1972) Mesenchyme et parenchyme hepatique dans la bilharziose experimentale aSchistosoma mansoni: Metaplasie Myeloide. CR Acad Sci Paris 274: 897–899Google Scholar
  16. 16.
    Horii Y, Fujita K, Owhashi M (1986) Partial purification and characterization of eosinophil chemotactic factors from soluble extract ofFasciola species. Am J Vet Res 47: 123–126PubMedGoogle Scholar
  17. 17.
    Horii Y, Owhashi M, Ishii A, Bandou K, Usui M (1984a) Leukocyte accumulation in sparganosis: Demonstration of eosinophil and neutrophil chemotactic factors from the plerocercoid ofSpirometra erinacei in vivo and in vitro. Am J Trop Med Hyg 33: 138–143PubMedGoogle Scholar
  18. 18.
    Horii Y, Owhashi M, Ishii A, Bandou K, Usui M (1984b) Eosinophil and neutrophil chemotactic activities of adult worm extracts ofSchistosoma japonicum in vivo and in vitro. J Parasitol 70: 955–961PubMedCrossRefGoogle Scholar
  19. 19.
    Horii Y, Ishii A, Owhashi M (1985) In vitro and in vivo induction of neutrophil and eosinophil chemotactic responses bySchistosoma japonicum cercaria. Am J Trop Med Hyg-34: 513–518PubMedGoogle Scholar
  20. 20.
    Johnson GR, Metcalf D (1980) Detection of a new type of mouse eosinophil colony by Luxol-Fast-Blue staining. Exp Hematol 8: 549–561PubMedGoogle Scholar
  21. 21.
    Mahmoud AAF, Stone MK, Kellermeyer RW (1977) Eosinophilopoietin. A circulating low molecular weight peptide-like substance which stimulates the production of eosinophils in mice. J Clin Invest 60: 675–682PubMedCrossRefGoogle Scholar
  22. 22.
    Maruyama H, Higa A, Asami M, Owhashi M, Nawa Y (1990) Extramedullary eosinophilopoiesis in the liver ofSchistosoma japonicum-infected mice, with reference to hemopoietic stem cells. Parasitol Res (in press)Google Scholar
  23. 23.
    Metcalf D, Johnson GR (1978) Production by spleen and lymph node cells of conditioned medium with erythroid and other hemopoietic colony-stimulating activity. J Cell Physiol 96: 31–42PubMedCrossRefGoogle Scholar
  24. 24.
    Metcalf D, Parker J, Chester HM, Kincade PW (1974) Formation of eosinophil-like granulocytic colonies by mouse bone marrow cells in vitro. J Cell Physiol 84: 275–289PubMedCrossRefGoogle Scholar
  25. 25.
    Moore RN, Hoffeld JT, Farrar JJ, Mergenhagen SE, Oppenheim JJ, Shadduck RK (1981) Role of colony-stimulating factors as primary regulation of macrophage functions. Lymphokines 3: 119–148Google Scholar
  26. 26.
    Nawa Y, Owhashi M, Imai J, Abe T (1986) Chemotactic reactivity of eosinophils obtained from bone marrow and peritoneal cavity of cyclophosphamide-treatedToxocara canis-infected mice. Int Archs Allergy Appl Immun 80: 412–416CrossRefGoogle Scholar
  27. 27.
    Nawa Y, Owhashi M, Imai J, Abe T (1987) Eosinophil response in mast celldeficient W/Wv mice. Int Archs Allergy Appl Immun 83: 6–11CrossRefGoogle Scholar
  28. 28.
    Nicola NA, Metcalf D, Johnson GR, Burgess A W (1979) Separation of functionally distinct human granulocyte-macrophage colony stimulating factors. Blood 54: 614- 627PubMedGoogle Scholar
  29. 29.
    Owhasi M, Horii Y, Ishii A, Nawa Y (1986a) Detection of high molecular weight eosinophil chemotactic factor in murine schistosomiasis sera. Am J Trop Med Hyg 35: 1192–1197Google Scholar
  30. 30.
    Owhashi M, Horii Y, Ishii A, Nawa Y (1986b) Low molecular weight eosinophil chemotactic factor (ECF) in the serum of murine schistosomiasis japonica. Int Archs Allergy Appl Immunol 79: 178–181CrossRefGoogle Scholar
  31. 31.
    Owhashi M, Ishii A (1982) Purification and characterization of a high molecular weight eosinophil chemotactic factor fromSchistosoma japonicum eggs. J Immunol 129: 2226–2231PubMedGoogle Scholar
  32. 32.
    Owhashi M, Maruyama H, Nawa Y (1986) Eosinophil chemotactic lymphokine produced by egg-associated granulomas in murine schistosomiasis japonicum. Infect Immunol 54: 723–727Google Scholar
  33. 33.
    Owhashi M, Maruyama H, Nawa Y (1987) Granulocyte-macrophage colonystimulating factor enhances the production of eosinophil chemotactic lymphokine by egg-associated granulomas ofSchistosoma japonicum-infected mice. Infect Immuno155: 2042–2046Google Scholar
  34. 34.
    Owhashi M, Nawa Y (1985) Granulocyte-macrophage colony-stimulating factor in the sera ofSchistosoma japonicum-infected mice, Infect Immunol 49: 533–537Google Scholar
  35. 35.
    Owhashi M, Nawa Y (1986) Granulocyte-macrophage colony-stimulating factor produced by splenic T lymphocytes of mice infected withSchistosoma japonicum. Infect Immunol 51: 213–217Google Scholar
  36. 36.
    Owhashi M, Nawa Y (1987a) Eosinophil chemotactic lymphokine produced by spleen cells ofSchistosoma japonicum-infected mice. Int Archs Allergy Appl Immuno1 82: 20–25CrossRefGoogle Scholar
  37. 37.
    Owhashi M, Nawa Y (1987b) Eosinophil chemotactic lymphokine produced by spleen cells ofSchistosoma japonicum-infected mice. II. Physicochemical heterogeneity of eosinophil chemotactic lymphokines selective to bone marrow- or peritoneal exudate-eosinophils. Int Archs Allergy Appl Immunol 83: 290–295CrossRefGoogle Scholar
  38. 38.
    Owhashi M, Nawa Y (1987c) Eosinophil chemotactic lymphokine produced by spleen cells ofSchistqsoma japonicum-infected mice. III. Isolation and characterization of two distinctive eosinophil chemotactic lymphokines directed against different maturation stages of eosinophils. Int Archs Allergy Appl Immunol 84: 185–189CrossRefGoogle Scholar
  39. 39.
    Phillips SM, Diconza JJ, Gold JA, Reid WA (1977) Schistosomiasis in congenitally athymic (nude) mouse. I. Thymic dependency of eosinophilia, granuloma formation and host morbidity. Ummunol 118: 594–599Google Scholar
  40. 40.
    Pluznik DH, Sachs L (1965) The cloning of normal ’mast cells’ in tissue culture. J Cell Comp Physiol 66: 319–324CrossRefGoogle Scholar
  41. 41.
    Ruscetti FW, Cypess RH, Chervenick PA (1976) Specific release of neutrophilic- and eosinophilic-stimulating factors from sensitized lymphocytes. Blood 47: 757–765PubMedGoogle Scholar
  42. 42.
    Sanderson CJ, Warren DJ, Strath M (1985) Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med 162: 60–74PubMedCrossRefGoogle Scholar
  43. 43.
    Sonoda T, Hayashi C, Kitamura Y, Nakano T, Bessho M, Hirashima K, Miyazaki E, Hara H (1984) Poor response of Wv/Wx mice to a grafted neutrophilia-inducing, colony-stimulating factor-producing tumor. Exp Hematol 12: 850–855PubMedGoogle Scholar
  44. 44.
    Spry CJF (1971) Mechanism of eosinophilia. VI. Eosinophil mobilization. Cell Tissue Kinet 4: 365–374PubMedGoogle Scholar
  45. 45.
    Sugane K, Oshima T (1982) Eosinophilia, granuloma formation and migratory behavior of larvae in the congenitally athymic mouse infected withToxocara canis. Parasite Immunol 4: 307–318PubMedCrossRefGoogle Scholar
  46. 46.
    Tanaka J, Baba T, Torisu M (1979)Ascaris and eosinophil. II. Isolation and characterization of eosinophil chemotactic factor and neutrophil chemotactic factor of parasite inAscaris antigen. J Immunol 122: 302–308Google Scholar
  47. 47.
    Tanaka J, Torisu M (1978)Anisakis and eosinophil. I. Detection of a soluble factor selectively chemotactic for eosinophils in the extract from Anisakis larvae. J Immunol 120: 745–749Google Scholar
  48. 48.
    Vadas MA (1981) Cyclophosphamide pretreatment induces eosinophilia to nonparasite antigens. J Immunol 127: 2083–2086PubMedGoogle Scholar
  49. 49.
    Walls RS, Carter RL, Leuchers E, Davies AJS (1973): The immunopathology of trichiniasis in T-cell deficient mice. Clin Exp Immunol 13: 231–242PubMedGoogle Scholar
  50. 50.
    Wasserman SI, Whitmer D, Goetzl EJ, Austen KF (1975) Chemotactic deactivation of human eosinophils by the eosinophil chemotactic factor of anaphylaxis (38527). Proc Soc Exp Bioi Med 148: 301–306Google Scholar
  51. 51.
    Weller PF, Goetzel EJ (1980) The regulatory and effector roles of eosinophils. Adv Immunol 27: 339–371CrossRefGoogle Scholar
  52. 52.
    Hirashima M, Hirotsu Y, Hayashi H (1983) Natural mediators of eosinophil chemotaxis in inflammation. In Yoshida T, Torisu M (eds), Immunobiology of the eosinophil, Elsevier, New York, pp 213–227Google Scholar

Copyright information

© Springer-Verlag Tokyo 1990

Authors and Affiliations

  • Y. Nawa
  • M. Owhashi
  • H. Maruyama

There are no affiliations available

Personalised recommendations