Advertisement

Irreversibility Field of Grain-Aligned (Hg, Pb) Ba2Ca2Cu3Oδ Superconductor

  • K. Isawa
  • A. Tokiwa-Yamamoto
  • T. Higuchi
  • T. Machi
  • M. Itoh
  • S. Adachi
  • M. Murakami
  • N. Koshizuka
  • H. Yamauchi
Conference paper

Abstract

We synthesized superconducting (Hg, Pb)xBa2Ca2Cu3Oδ (1.0 ≤ x ≤ 2.5) (nominal compositions) samples by solid state reaction. Powder x-ray diffractior analysis indicated that the main phase in the samples was Hg-1223. Other phases included small amount of CaO, CuO and BaCuO2. The sample with x=1.5 heat treated in flowing Ar gas exhibited diamagnetic susceptibility at 132K. According to thermoelectric power measurements, the carrier density in the sample was reversibly dependent on the oxygen partial pressure. The sample post-annealed in flowing oxygen gas was likely overdoped. The irreversibility fields (Hirr) was measured using the magnetically grain-aligned Hg-1223 samples doped with Pb. The Hirr of this sample was found to be located at higher position than those of Bi-based superconductors. Hirr of Hg-1223 phase containing three CuO2 layers laid at roughly similar position to those reported for Hg-1201 and Hg-1212 compunds. It is indicates that higher Tc phase, i. e., Hg-1223, was likely to be advantageous for practical appreciation.

Keywords

Diamagnetic Susceptibility Irreversibility Field Thermoelectric Power Measurement Fuze Quartz Overdoped Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. N. Putilin, et al., Nature (London) 362, 226 (1993).CrossRefGoogle Scholar
  2. [2]
    A. Schilling, et al., Nature (London) 363, 56 (1993).CrossRefGoogle Scholar
  3. [3]
    S. N. Putilin, et al., Physica C 212, 266 (1993).CrossRefGoogle Scholar
  4. [4]
    O. Chmaissem,et al, Physica C 212, 259 (1993).Google Scholar
  5. [5]
    M. Itoh, et al., Physica C 212, 271 (1993).Google Scholar
  6. [6]
    U. Welp, et al, Appl. Phys. Lett. 63, 693 (1993).CrossRefGoogle Scholar
  7. [7]
    Z. J. Huang, Y. Y. Xue, R. L. lyfeng and C. W. Chu, (private communication).Google Scholar
  8. [8]
    S. Adachi, et al, Physica C 214, 313 (1993).Google Scholar
  9. [9]
    A. Tokiwa-Yamamoto, et al., Physica C (in press).Google Scholar
  10. [10]
    M. Hirabayshi, et al., Jpn. J. Appl. Phys. 32, L1206 (1993).CrossRefGoogle Scholar
  11. [11]
    S. S. P. Parkin, et al., Phys. Rev. Lett. 61 (1988) 750.Google Scholar
  12. [12]
    H. Ihara, et al. and T. Shimomura, Nature (London) 334, (1988) 510.Google Scholar
  13. [13]
    M. Takano, et al, Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
  14. [14]
    M. A. Sabramanian, et al., Science 239, 1015 (1988).CrossRefGoogle Scholar
  15. [15]
    K. Isawa et al., Physica C 217, 11 (1993).Google Scholar
  16. [16]
    D. E. Farrell, et al., Phys. Rew. B. 36, 4025 (1987).CrossRefGoogle Scholar
  17. [17]
    D. E. Farrell, et al., Phys. Rev. Lett. 64, 1573 (1990).CrossRefGoogle Scholar
  18. [18]
    S. D. Cbertelli, et al., Phys. Rew. B. 46, 14928 (1993).CrossRefGoogle Scholar
  19. [19]
    Y. Xu and M. Suenaga, Phys. Rew. B. 43, 5516 (1991).Google Scholar
  20. [20]
    T. Nabatame, et al., Physica C 193, 390 (1992).Google Scholar
  21. [21]
    J. G. Ossandon, et al., Phys. Rew. B. 45, 12534 (1992).Google Scholar
  22. [22]
    D. H. Kim, et al., Physica C 177, 431 (1991).Google Scholar
  23. [23]
    W. Y. Liang, Physica C 209, 237 (1993).Google Scholar
  24. [24]
    K. Yvon and M. Francois, Z. Phys. B 76, 413 (1989).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1994

Authors and Affiliations

  • K. Isawa
    • 1
  • A. Tokiwa-Yamamoto
    • 1
  • T. Higuchi
    • 1
  • T. Machi
    • 1
  • M. Itoh
    • 1
  • S. Adachi
    • 1
  • M. Murakami
    • 1
  • N. Koshizuka
    • 1
  • H. Yamauchi
    • 1
  1. 1.Superconductivity Research LaboratoryInternational Superconductivity Technology CenterKoto-ku, Tokyo 135Japan

Personalised recommendations