YBCO Thin Film DC-SQUIDs with Step-edge Josephson Junctions

  • P. Seidel
  • F. Schmidl
  • H. Schneidwind
  • L. Dörrer
  • M. Darula


YBa2Cu3O7−x thin film DC-SQUIDs using step-edge Josephson junctions are prepared by laser ablation and sputtering on (100) SrTiO3 substrates. There is a strong dependence of critical current on the ratio of step height to film thickness. Ion beam etching of the contact region allows changes of parameters of the junctions thus giving possibilities to optimize the SQUID parameters. The properties of step-edge junction SQUIDs are discussed within the frame of a RCSJ model using arrays of junctions in series closed in a superconducting loop instead of single junctions. It is shown that the behaviour of such a network SQUID is different to the usual two junction SQUID. These differences like a hysteresis in the voltage-flux characteristics and an intrinsic telegraph-like noise show the limitations of step-edge junction SQUIDs.


Critical Current Josephson Junction Single Junction Superconducting Loop External Magnetic Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seidel P, Heinz E (1993) Strongly correlated electron systems and narrow band phenomena in solids, Eds. Aksami J, Matlak M, Silesian University Press, Katowice: 141Google Scholar
  2. 2.
    Daly KP, Dozier WD, Burch JF, Coons SB, Platt CE, Simon RW (1991) Appi. Phys. Lett. 58: 534Google Scholar
  3. 3.
    Tanaka S, Kado H, Matsuvra T, Itozaki H (1993) IEEE Trans. Supercond. 3: 2365Google Scholar
  4. 4.
    Siegel M, Hermann K, Copetti C, Jia CL, Kabius B, Schubert J, Zander W, Braginski AI, Seidel P (1993) IEEE Trans. Supercond. 3: 2369CrossRefGoogle Scholar
  5. 5.
    Schmidl F, Alff L, Gross R, Husemann KD, Schneidewind H, Seidel P (1993) IEEE Trans. Supercond. 3: 2349CrossRefGoogle Scholar
  6. 6.
    Borck J, Linzen S, Zach K, Seidel P (1993) Physics C 213: 145CrossRefGoogle Scholar
  7. 7.
    Alff L, Fischer GM, Gross R, Kober F, Beck A, Husemann KD, Nissel T, Schmidl F, Burckhardt C (1992) Physica C 200: 277CrossRefGoogle Scholar
  8. 8.
    Seidel P, Heinz E, Schmidl F, Zach K, Köhler HJ, Schneidewind H, Borck J, Dörrer L, Linzen S, Köhler T, Michalke W, Manzel M, Steinbeiss E, Bruchlos H, Kley EB, Fuchs HJ (1993) IEEE Trans. Supercond. 3: 2353Google Scholar
  9. 9.
    Glyantsev VN, Siegel M, Schubert J, Zander W, Poppe U, Soltner H, Braginski AI, Heiden C (1993) IEEE Trans. Supercond. 3: 2472Google Scholar
  10. 10.
    Matsuda M, Kuriki S (1988) Appl. Phys. Lett. 53: 621Google Scholar
  11. 11.
    Darula M, Seidel P, Busse F, Benacka S (1993) Appl. Phys. 74: 2674Google Scholar
  12. 12.
    Darula M, Seidel P, Misanik B, Busse F, Heinz E, Benacka S, to appear in Physica BGoogle Scholar
  13. 13.
    Busse F, Nebel R,Herzog P, Darula M, Seidel P (1993) Appl. Phys. Lett. 63: 1687Google Scholar
  14. 14.
    Darulova A, paper in preparationGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1994

Authors and Affiliations

  • P. Seidel
    • 1
  • F. Schmidl
    • 1
  • H. Schneidwind
    • 1
  • L. Dörrer
    • 1
  • M. Darula
    • 1
    • 2
  1. 1.Institut für FestkörperphysikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations