Pharmacology of newly developed H1 antagonists: antiallergic profile of H1 antagonists

  • Kenji Tasaka


In 1937, the first antihistarninic compound was found by Bovet and Staub in one of a series of amines with a phenolic ether function. Although this compound, 2-isopropyl-5- methylphenoxyethyldiethylamine, protected guinea pigs not only from several lethal doses of histamine but also from the symptoms of anaphylactic shock, this drug was too toxic for clinical use. As a result of the following search for a histamine antagonist, pyrilamine maleate was found as one of the most specific and effective histamine antagonists in the early 1940’s. By the early 1950’s, many compounds having antihistaminic property had been described (Douglas, 1985). However, all these classical histamine antagonists (H1 antagonists) caused central side effects such as sedation, lassitude and drowsiness (Wyngaarden and Seevers, 1951). In addition, concurrent ingestion of alcohol and other eNS depressants produced an additive effect in impairing eNS actions, such as disturbing motor skills (Garrison, 1990).


Mast Cell Histamine Release Allergic Conjunctivitis Maximal Electroshock Seizure Passive Cutaneous Anaphylaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi, M., Mio, M., Tasaka, K. and Kiniwa, S.: Mechanism of histamine release inhibition induced by azelastine. Pharmacometrics, 26, 191–198 (1983)Google Scholar
  2. Akagi, M., Mio, M., Miyoshi, K and Tasaka, K: Antiallergic effects of terfenadine on immediate type hypersensitivity reactions. Immunopharmacol. Immunotoxicol., 9, 257–279 (1987)CrossRefGoogle Scholar
  3. Akagi, M. and Tasaka, K: Analysis of bronchomotor tone in anesthetized guinea pigs by impedance plethysmography: a simple method for the evaluation of bronchodilator action. Meth. Find. Exp. Clin. Pharmacol., 10, 143–150 (1988)Google Scholar
  4. Arunlakshana, O.: Histamine release by antihistamines. J. Physiol., 119, 47–48P (1953)Google Scholar
  5. Awouters, F.H.L., Niemegeers, C. J. E. and Janssen, P.A.J.: Pharmacology of the specific histamine H1-antagonist astemizole. Arzneim.-Forsch., 33, 381–388 (1983)Google Scholar
  6. Beaven, M.A., Rogers, J., Moore, J.P., Hesketh, T.R., Smith, G.A. and Metcalfe, J.C.: The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J. Biol. Chem., 259, 7129–7136 (1984)PubMedGoogle Scholar
  7. Bende, M. and Pipkorn, U.: Topical levocabastine, a selective H1 antagonist, in seasonal allergic rhinoconjunctivitis. Allergy, 42, 512–515 (1987)PubMedCrossRefGoogle Scholar
  8. Bergmann, F., Costin, A. and Gutman, J.: A low threshold convulsive area in the rabbit’s mesencephalon. EEG Clin. Neurophysiol., 15, 683–690 (1963)Google Scholar
  9. Bovet, D. and Staub, A.-M.: Action protectrice des éthers phénoliques au cours de l’intoxication histaminique. C.R. Soc. Biol., 124, 547–549 (1937)Google Scholar
  10. Chand, N., Harrison, J.E., Rooney, S.M., Sofia, R.D. and Diamantis, W.: Inhibition of passive cutaneous anaphylaxis (PCA) by azelastine: Dissociation of its antiallergic activities from antihistaminic and antiserotonin properties. Int. J. Immunopharmacol., 7, 833–838 (1985)PubMedCrossRefGoogle Scholar
  11. Church, M. K and Gradidge, C.F.: Inhibition of histamine release from human lung in vitro by antihistamines and related drugs. Br. J. Pharmacol., 69, 663–667 (1980)PubMedGoogle Scholar
  12. Cooley, J.W. and Tukey, J.S.: An algorithm for machine calculation of complex Fourier series. Math. Comput., 19, 267–301 (1965)Google Scholar
  13. Criscuoli, M., Subissi, A., Daffonchio, L. and Omini, C.: LG 30435, a new bronchodilator / antiallergic agent, inhibits PAF -acether induced platelet aggregation and bronchoconstriction. Agents Actions, 19, 246–250 (1986)PubMedCrossRefGoogle Scholar
  14. de Groot, J.: The rat forebrain in stereotaxic coordinates, Verh. K Ned. Acad. Wet. Naturkund., 52, 1–40 (1959)Google Scholar
  15. Douglas, W.W.: Histamine and 5-hydroxytryptamine (serotonin) and their antagonist. In: Gilman, A.G., Goodman, L.S., Rall, T.W., Murad, F. (ed) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 7th ed. Macmillan Publishing Co., New York., 524–627, 1985Google Scholar
  16. Fukuda, T., Morimoto, Y., Iemura, R., Kawashima, T., Tsukamoto, G. and Ito, K.: Effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl)-benzimidazole difumarate (KB-2413), a new antiallergic, on chemical mediators. Arzneim.-Forsch., 34, 801–805 (1984)Google Scholar
  17. Fügner, A., Bechtel, W.D., Kuhn, F.J. and Mierau, J.: In vitro and in vivo studies of the non-sedating antihistamine epinastine. Arzneim. - Forsch., 38, 1446–1453 (1988)Google Scholar
  18. Garrison, J.C.: Histamine, bradykinin, 5-hydroxytryptamine, and their antagonists, In: Gilman, A.G., Rall, T.W., Nies, A.S. and Taylor, P. (ed) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 8th ed. Pergamon Press, New York, pp.575–599,. 1990Google Scholar
  19. Goldstein, L., Murphree, H.B., Pfeiffer, C.C: Comparative study of EEG effects of antihis tamines in nonnal volunteers. J. Clin. Phannacol., 8, 42–53 (1968)Google Scholar
  20. Guesdon, J.L., Chevrier, D., Mazié, J.C., David, B. and Avrameas, S.: Monoclonal antihistamine antibody, preparation, characterization and application to enzyme immunoassay of histamine. J. Immunol. Methods, 87, 69–78 (1986)PubMedCrossRefGoogle Scholar
  21. Hall, C.S.: Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. J. Compo Psychol., 22, 345–352 (1936)CrossRefGoogle Scholar
  22. Hayashi, H., Ichikawa, A., Saito, T. and Tomita, K: Inhibitory role of cyclic adenosine 3′, 5′ -monophosphate in histamine release from rat peritoneal mast cells in vitro. Biochem. Phannacol., 25, 1907–1913 (1976)Google Scholar
  23. Kamei, C., Kiniwa S., Ikegami, N. and Tasaka, K: Effect of 4-(p-chlorobenzyl)-[Nmethylperhydroazepinyl-(4)] -1-(2H)-phthalazinone hydrochloride (azelastine) on EEGs and behavior in rats. Jpn. J. Clin. Pharmacol. Ther., 12, 297–310 (1981)CrossRefGoogle Scholar
  24. Kamei, C., Akahori, H. and Tasaka, K: Influence of histamine and related compounds on the hypnotic effect of thiopental in mice. J. Pharmacobio-Dyn., 9, 112–116 (1986)PubMedCrossRefGoogle Scholar
  25. Kamei, C., Chung, Y.H. and Tasaka, K: Influence of certain H1-blockers on the stepthrough active avoidance response in rats. Psychopharmacology, 102, 312–318 (1990)PubMedCrossRefGoogle Scholar
  26. Kamei, C., Mio, M., Izushi, K, Kitazumi, K, Tsujimoto, S., Fujisawa, K, Adachi, Y. and Tasaka, K: Antiallergic effects of major metabolites of astemizole in rats and guinea pigs. Arzneim.-Forsch., 41, 932–936 (1991a)Google Scholar
  27. Kamei, C., Mio, M., Izushi, K, Yoshii, N., Fujisawa, K, and Tasaka, K: Inhibitory effect of MY-1250 on histamine release from rat peritoneal mast cells and guinea pig lung fragments: The elucidation of the mechanism. Immunophannacol. Immunotoxicol., 13, 341–356 (1991b)CrossRefGoogle Scholar
  28. Kamei, C., Izushi, K and Tasaka, K: Inhibitory effect of levocabastine on experimental allergic conjunctivitis in guinea pigs. J. Phannacobio-Dyn., 14, 467–473 (1991c)CrossRefGoogle Scholar
  29. Kamei, C., Akagi, M., Mio, M., Kitazumi, K, Izushi, K, Masaki, S. and Tasaka, K: Antiallergic effect of epinastine (W AL 801 CL) on immediate hypersensitivity reactions: (I) Elucidation of the mechanism for histamine release inhibition. Immunophannacol. Immunotoxicol., 14, 191–205 (1992a)CrossRefGoogle Scholar
  30. Kamei, C., Mio, M., Kitazumi, K, Tsujimoto, S., Yoshida, T., Adachi, Y. and Tasaka, K: Antiallergic effect of epinastine (WAI 801 CL) on immediate hypersensitivity reactions: (II) Antagonistic effect of epinastine on chemical mediators, mainly antihistaminic and anti-PAF effects. Immunophannacol. Immunotoxicol., 14, 207–218 (1992b)CrossRefGoogle Scholar
  31. Kamei, C., Okumura, Y. and Tasaka, K: Influence of histamine depletion on learning and memory recollection in rats. Psychophannacology, 111, 376–382 (1993)CrossRefGoogle Scholar
  32. Kaneko, T., Kitahara, A., Ozaki, S., Takizawa, K and Yamatsu, K: Effects of azelastine hydrochloride, a novel anti-allergic drug, on the central nervous system. Arzneim. - Forsch., 31, 1206–1212 (1981)Google Scholar
  33. Kebabian, J.W., Petzold, G.L. and Greegard, P.: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “Dopamine Receptor”. Proc. Natl. Acad. Sci., 69, 2145–2149 (1972)PubMedCrossRefGoogle Scholar
  34. Koster, R., Anderson, M. and de Beer, E.J.: Acetic acid for analgesic screening. Fed. Proc., 18, 412 (1959)Google Scholar
  35. Kojima, M., Tsutsumi, N., Abe, M., Komatsu, H., Ujiie, A., Naito, J. and Nakazawa, M.: Experimental allergic rhinitis in rats and the influence of tranilast and antihistaminics on it. Jpn. J. Allergol., 35, 180–187 (1986)Google Scholar
  36. Kreindler, A., Zuckermann, E., Steriade, M. and Chimion, D.: Electroclinical features of convulsions induced by stimulation of brain stem. J. Neurophysiol., 21, 430–436 (1958)PubMedGoogle Scholar
  37. Lau, H.Y.A. and Pearce, F.L.: Dual effect of antihistamines on rat peritoneal mast cells: induction and inhibition of histamine release. Agents Actions, 16, 176–178 (1985)PubMedCrossRefGoogle Scholar
  38. Leavitt, M.D. and Code, C.F.: Anesthetic action of beta-dimethylaminoethyl benzhydryl ether hydrochloride (benadryl) in the skin of human beings. Proc. Soc. expo Biol. (N.Y.), 65, 33–38 (1947)Google Scholar
  39. Levine, B.B. and Vaz, N.M.: Effect of combinations of inbred strain, antigen, and antigen dose on immune responsiveness and reagin production in the mouse. Int. Arch. Allergy, 39, 156–171 (1970)PubMedCrossRefGoogle Scholar
  40. Lewis, A.J., Dervinis, A. and Chang, J.: The effects of antiallergic and bronchodilator drugs on platelet-activating factor (PAF-acether) induced bronchospasm and platelet aggregation. Agents Actions, 15, 636–642 (1984)PubMedCrossRefGoogle Scholar
  41. Loeffler, L.J., Lovenberg, W. and Sjoerdsma, A.: Effects of dibutyryl-3′, 5′-cyclic adenosine monophosphate, phosphodiesterase inhibitors and prostaglandin E1 on compound 48/80-induced histamine release from rat peritoneal mast cells in vitro. Biochem. Pharmacol., 20, 2287–2297 (1971)Google Scholar
  42. McManus, L.M., Hanahan, D.J., Demopoulos, C.A. and Pinckard, RN.: Pathobiology of the intravenous infusion of acetyl glyceryl ether phosphorylcholine (AGEPC), a synthetic platelet-activating factor (PAF), in the rabbit. J. Immunol., 124, 2919–2924 (1980)PubMedGoogle Scholar
  43. Martin, U. and Römer, D.: The pharmacological properties of a new, orally active antianaphylactic compound: Ketotifen, a benzocycloheptathiophene. Arzneim. - Forsch., 28, 770–782 (1978)Google Scholar
  44. Mota, I.: The mechanism of anaphylaxis. I. Production and biological properties of ‘mast cell sensitizing’ antibody. Immunology, 7, 681–699 (1964)PubMedGoogle Scholar
  45. Naranjo, P. and Naranjo, E.B. De: Local anesthetic activity of some antihistamines and its relationship with the antihistaminic and anticholinergic activities. Arch. int. Pharmacodyn., 113, 313–335 (1958)PubMedGoogle Scholar
  46. Nemeth, A. and Röhlich, P.: Rapid separation of rat peritoneal mast cells with Percoll. Eur. J. Cell Biol., 20, 272–275 (1980)PubMedGoogle Scholar
  47. Ohmori, K, Ishii, H., Kubota, T., Shuto K and Nakamizo, N.: Inhibitory effects of oxatomide on several activities of SRS-A and synthetic leukotrienes in guinea pigs and rats. Arch. int. Pharmacodyn., 275, 139–150 (1985)PubMedGoogle Scholar
  48. Ohmori, K, Ishii, H., Shuto, K and Nakamizo, N.: Pharmacological studies on oxatomide: (4) Effect on the histamine release from rat isolated peritoneal exudate cells (PEC) and lung slices. Folia pharmacol. japon., 80, 441–449 (1982)CrossRefGoogle Scholar
  49. Patel, KR: The effect of calcium antagonist, nifedipine in exercise-induced asthma. Clin. Allergy, 11, 429–432 (1981)PubMedCrossRefGoogle Scholar
  50. Pellerat, J. and Murat, M.: Action des antihistaminiques de synthese sur l’histaminemie. C.R Soc. Biol. (Paris), 140, 297 (1946)Google Scholar
  51. Pöch, G.: Assay of phosphodiesterase with radioactively labeled cyclic 3′, 5′-AMP as substrate. Naunyn-Schmiedebergs Arch. Pharmak., 268, 272–299 (1971)Google Scholar
  52. Ritchie, D.M., Sierchio, J.N., Bishop, C.M., Hedli, C.C., Levinson, S.L. and Capetola, R J.: Evaluation of calcium entry blockers in several models of immediate hypersensitivity. J. Phannacol. Exp. Ther., 229, 690–695 (1984)Google Scholar
  53. Ross, E.M., Maguire, M.E., Sturgill, T.W., Biltonen, R.L. and Gilman, A.G.: Relationship between the β-adrenergic receptor and adenylate cyclase. J. Biol. Chern., 252, 5761–5775 (1977)Google Scholar
  54. Siraganian, R.P.: An automated continuous-flow system for the extraction and fluorometric analysis of histamine. Anal. Biochem., 57, 383–394 (1974)Google Scholar
  55. Spataro, AC. and Bosmann, H.B.: Mechanism of action of disodium cromoglycate-mast cell calcium ion influx after a histamine-releasing stimulus. Biochem. Phannacol., 25, 505–510 (1976)CrossRefGoogle Scholar
  56. Shore, P.A., Burkhalter, A and Cohn, V.H.: A method for the fluorometric assay of histamine in tissues. J. Pharmacol. Exp. Ther., 127, 182–187 (1959)PubMedGoogle Scholar
  57. Swinyard, E.A, Jolley, J.M. and Goodman, L.S.: Anticonvulsant properties of benadryl and pyribenzamine. Proc. Soc. Exp. Biol. Med., 75, 239–242 (1950)PubMedGoogle Scholar
  58. Tada, T. and Okumura, K.: Regulation of homocytotropic antibody formation in the rat. I. Feed-back regulation by passively administered antibody. J. Immunol., 106, 1002–1011 (1971)PubMedGoogle Scholar
  59. Tasaka, K.: Histamine release and its inhibition by antihistamines. Folia pharmacol, japon., 53, 1029–1035 (1957)CrossRefGoogle Scholar
  60. Tasaka, K. and Akagi, M.: Anti-allergic properties of a new histamine antagonist, 4-(p-Chlorobenzyl)-2- [N-methyl-perhydroazepinyl-(4)]-1-(2H)-phthalazinone hydrochloride (Azelastine). Arzneim.-Forsch., 29, 488–493 (1979)Google Scholar
  61. Tasaka, K., Kamei C., Akahori H. and Kitazumi, K.: The effects of histamine and some related compounds on conditioned avoidance response in rats. Life Sci., 37, 2005–2014 (1985)PubMedCrossRefGoogle Scholar
  62. Tasaka, K., Mio, M. and Okamoto, M.: Intracellular calcium release induced by histamine releasers and its inhibition by some antiallergic drugs. Ann. Allergy, 56, 464–469 (1986a)PubMedGoogle Scholar
  63. Tasaka, K., Mio, M., Okamoto, M.: Changes in intracellular Ca2+ distribution of rat peritoneal mast cells before and after histamine release. Agents Actions, 18, 61–64 (1986b)PubMedCrossRefGoogle Scholar
  64. Tasaka, K., Kamei C., Katayama, S., Kitazumi, K., Akahori, H. and Hokonohara, T.: Comparative study of various H1-blockers on neuropharmacological and behavioral effectS including 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl) benzimidazole difumarate (KB-2413), a new antiallergic agent. Arch. int. Pharmacodyn., 280, 275–291 (1986c)Google Scholar
  65. Tasaka, K., Akagi, M., Mio, M., Miyoshi, K. and Nakaya, N.: Inhibitory effects of oxatomide on intracellular Ca mobilization, Ca uptake and histamine release, using rat peritoneal mast cells. Int. Archs Allergy appl. Immun., 83, 348–353 (1987)CrossRefGoogle Scholar
  66. Tasaka, K., Akagi, M., Mio, M., Okamoto, M., Miyoshi, K. and Izushi, K.: Antiallergic effects of terfenadine on immediate type hypersensitivity reactions and the mechanisms of those actions. Jpn. Pharmacol. Ther., 16, 2465–2480 (1988)Google Scholar
  67. Tasaka, K., Chung, Y.H., Sawada, K. and Mio, M.: Excitatory effect of histamine on the arousal system and its inhibition by H1 blockers. Brain Res. Bull., 22, 271–275 (1989a)PubMedCrossRefGoogle Scholar
  68. Tasaka, K., Kamei C., Tsujimoto, S., Chung, Y.H. and Nakano, S.: Effects of mequitazine and some other HI-blockers on the central nervous system. Pharmacometrics, 37, 509–516 (1989b)Google Scholar
  69. Tasaka, K., Kamei C., Nakano, S., Tsujimoto, S. and Chung, Y.H.: Effect of epinastine, a new antiallergic agent, on the central nervous system. Pharmacometrics, 38, 53–62 (1989c)Google Scholar
  70. Tasaka, K., Akagi, M., Izushi, K. and Mio, M.: Antiallergic effects of astemizole on immediate type hypersensitivity reactions. Meth. Find. Exp. Clin. Pharmacol., 12, 531–539 (1990a)Google Scholar
  71. Tasaka, K., Kamei, C., Chung, Y.H., Tsujimoto, S. and Mukai, T.: Influence of astemizole, a non-sedative H1-blocker on the central nervous system. Pharmacometrics., 39, 197–206 (1990b)Google Scholar
  72. Tasaka, K., Kamei, C., Tsujimoto, S., Yoshida, T. and Aoki, I.: Central effect of the potent long-acting H1-antihistamine levocabastine. Arzneim. - Forsch., 40, 1295–1299 (1990c)Google Scholar
  73. Tasaka, K., Akagi, M., Izushi, K. and Aoki, I.: Antiallergic effect of epinastine: the elucidation of the mechanism. Pharmacometrics, 39, 365–373 (1990d)Google Scholar
  74. Tasaka, K., Akagi, M., Mio, M., Izushi, K. and Aoki, I.: Anti-platelet activating factor, anti-leukotriene D4 and some other antiallergic activities of mequitazine. Arzneim. - Forsch., 40, 1092–1097 (1990e)Google Scholar
  75. Tasaka, K., Kamei, C., Akagi, M., Mio, M., Shirasaka, T. and Chokki, M.: Antiallergic profile of the novel H1-antihistaminic compound levocabastine. Arzneim.-Forsch., 43, 1331–1337 (1993)Google Scholar
  76. Tasaka, K., Kamei C. and Nakamura, S.: Inhibitory effect of epinastine on bronchoconstriction induced by histamine, platelet activating factor and serotonin in guinea pigs and rats. Arzneim. - Forsch., 44, 327–329 (1994a)Google Scholar
  77. Tasaka, K., Kamei, C. and Nakamura, S.: Effects of antiallergic agents including levocabastine on experimental rhinitis in rats. Arzneim.-Forsch., 44, 337–341 (1994b)Google Scholar
  78. Vargaftig, B.B., Lefort, J., Chignard, M. and Benveniste, J.: Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives. European J. Pharmacol., 65, 185–192 (1980)Google Scholar
  79. Venuti M.C.: Platelet-activating factor: multifaceted biochemical and physiological mediator. Ann. Rep. Med. Chern., 20, 193–202 (1985)CrossRefGoogle Scholar
  80. Wauwe, J. Van., Awouters, F., Niemegeers, C.J.E., Janssens, F., Neuten, J.M. Van and Janssen, P.A.J.: In vivo pharmacology of astemizole, a new type of HI-antihistaminic compound. Arch. int Pharmacodyn., 251, 39–51 (1981)PubMedGoogle Scholar
  81. Weidmann, H. and Petersen, P.V.: A new group of potent sedatives. J. Pharmacol. Exp. Ther., 108, 201–216 (1953)PubMedGoogle Scholar
  82. White, J.R., Ishizaka, T., Ishizaka, K. and Sha’afi R.I.: Direct demonstration of increased intracellular concentration of free calcium as measured by quin-2 in stimulated rat peritoneal mast cell. Proc. Natl. Acad. Sci. U.S.A., 81, 3978–3982 (1984)PubMedCrossRefGoogle Scholar
  83. Winter, C.A. The potentiating effect of antihistaminic drugs upon the sedative action of barbiturates. J. Pharmacol. Exp. Ther., 94, 7–11 (1948)PubMedGoogle Scholar
  84. Winter, C.A. and Flataker, L.: The effect of antihistaminic drugs upon the performance of trained rats. J. Pharmacol. Exp. Ther., 101, 156–162 (1951)PubMedGoogle Scholar
  85. Wyngaarden, J.B. and Seevers, M.H.: The toxic effects of antihistaminic drugs. J. Amer. Med. Ass., 145, 277–282 (1951)CrossRefGoogle Scholar
  86. Yamasaki, H. and Tasaka, K.: Dual action of antihistamines on histamine release. Acta Med. Okayama, 11, 290–299 (1957)Google Scholar

Copyright information

© Springer-Verlag Tokyo 1994

Authors and Affiliations

  • Kenji Tasaka
    • 1
  1. 1.The Department of Pharmacology in the Faculty of Pharmaceutical SciencesOkayama UniversityOkayamaJapan

Personalised recommendations