Histamine-induced leukocytosis

  • Kenji Tasaka


From the early years of the introduction of H2 antagonists for clinical uses, many reports have been published that H2 antagonists induce various kinds of cytopenia, such as neutropenia, agranulocytosis, thrombocytopenia, pancytopenia and lymphopenia. At the present time, it has become evident that histamine exerts a stimulative effect on the differentiation and proliferation of bone marrow stem cells, especially in neutrophil progenitors, via an H2 receptor stimulation (Tasaka, 1991). However, as early as 8 years before the discovery of the H2 receptor and histamine H2 antagonist by Black et al. (1972), Tasaka and Code (1964) reported that chronic injection of histamine induces leukocytosis in various kinds of experimental animals. This was the first report which clearly pointed out the hematopoietic action of histamine in vivo. A growing body of evidence indicates that histamine is not only a physiological hematopoietic substance but also that it interacts with other hematopoietic cytokines, such as granulocytic colony stimulating factor (G-CSF) and interleukin-1α (IL-1), at physiological concentration range. The stimulative effect of histamine on several leukemia cells has also been reported (Nonaka et al., 1992). In this chapter, the mechanism of histamine-induced leukocytosis is reviewed.


Bone Marrow Stromal Cell Murine Bone Marrow cAMP Content Human Promyelocytic Leukemia Cell Histamine Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi K., Aoyagi T., Iizuka H., Halprin K.M. and Levine V. (1980) Cyclic GMP system in the epidermis. Curr. Probl. Dermatol., 10: 39–65PubMedGoogle Scholar
  2. Akiyama Y., Mukai T., Kamei C. and Tasaka K. (1990) Histamine lipolysis I: Changes in the free fatty acid levels of dog plasma after intravenous infusion of histamine. Meth. Find. Exp. Clin. Pharmacol., 12: 315–324Google Scholar
  3. Bainton D.F., Ullyot J.L. and Farquhar M.G. (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. Exp. Med., 134: 907–934PubMedCrossRefGoogle Scholar
  4. Black J.W., Duncan W.A.M., Durant G.J., Gannelin C.R. and Parsons M.E.: Definition and antagonism of histamine H2-receptors. Nature, 236: 385–390Google Scholar
  5. Burgess A.W. and Metcalf D. (1980) The nature and action of granulocyte-macrophage colony stimulating factors. Blood, 56: 947–958PubMedGoogle Scholar
  6. Burtin C. (1986) Mast cells and tumour growth. Ann. Inst. Pasteur Immunol., 137D: 289–294PubMedGoogle Scholar
  7. Burtin C., Scheinmann P., Salomon J.C., Lespinats G., Frayssinet C., Lebel B. and Canu P. (1981) Increased tissue histamine in tumour-bearing mice and rats. Br. J. Cancer, 43: 684–688PubMedCrossRefGoogle Scholar
  8. Byron J.W. (1976) Bone-marrow toxicity of metiamide. Lancet, 2: 1350PubMedCrossRefGoogle Scholar
  9. Byron J.W. (1980) Pharmacodynamic basis for the interaction of cimetidine with the bone marrow stem cells (CFU-S). Exp. Hematol., 8: 256–263PubMedGoogle Scholar
  10. Catini C., Gheri G., Giampaoli M. and Miliani A. (1984) Histamine uptake by leukocytes in vitro. Basic Appl. Histochem., 28: 329–336PubMedGoogle Scholar
  11. Chaplinski T.J. and Niedel J.E. (1986) Cyclic AMP levels and cellular kinetics during maturation of human promyelocytic leukemia cell. J. Leukocyte Biol., 39: 323–331PubMedGoogle Scholar
  12. Clark R.A.F., Gallin J.I. and Kaplan A. (1975) The selective eosinophil chemotactic activity of histamine. J. Exp. Med., 142: 1462–1476PubMedCrossRefGoogle Scholar
  13. Code C.F. (1976) Suppression of histamine leucocytosis by metiamide. J. Physiol. (Lond.) 254: 31P-32PGoogle Scholar
  14. Collins S.J., Ruscetti F.W., Gallagher R.E. and Gallo R.C. (1978) Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA, 75: 2458–2462PubMedCrossRefGoogle Scholar
  15. de Galoscy C. and van Ypersele de Strihou C. (1979) Pancytopenia with cimetidine. Ann. Intern. Med., 90: 274Google Scholar
  16. Deutsch P.J., Rosen O.M. and C.S. Rubin (1982) Identification and characterization of a latent pool of insulin receptors in 3T3-L1 adipocytes. J. Biol. Chem., 257: 5350–5358PubMedGoogle Scholar
  17. Dexter T.M., Allen T.D. and Lajtha L.G. (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol., 91: 335–344PubMedCrossRefGoogle Scholar
  18. Dexter T.M. and Testa N.G. (1976) Differentiation and proliferation of hemopoietic cells in culture. Methods Cell Biol. 14: 387–405PubMedCrossRefGoogle Scholar
  19. Dinarello C.A. (1988) Interleukin-1. Ann. N.Y. Acad. Sci., 546: 122–132PubMedCrossRefGoogle Scholar
  20. Dinarello C.A., Ikejima T., Warner S.J.C., Orencole S.F., Lonnemann G., Cannon J.G. and Libby P. (1987) Interleukin 1 induces interleukin 1. J. Immunol., 139: 1902–1910PubMedGoogle Scholar
  21. Dunn A.R. (1987) The role of growth factors in normal and neoplastic haemopoiesis. Ann. N. Y. Acad. Sci. 511: 1–9PubMedCrossRefGoogle Scholar
  22. Evans S.W., Rennick D. and Farrar W.L. (1987) Identification of a signal-transduction pathway shared by haematopoietic growth factors with diverse biological specificity. Biochem. J., 244: 683–691PubMedGoogle Scholar
  23. Feldman E.J. and Isenberg J.I. (1976) Effects of metiamide on gastric acid hypersecretion, steatorrhea and bone-marrow function in a patient with systemic mastocytosis. N. Engl. J. Med., 295: 1178–1179PubMedCrossRefGoogle Scholar
  24. Fibbe W.E., Damme J.V., Billiau A., Goselink H.M., Voogt P.J., Eeden G.V., Ralph P., Altrock B.W. and Falkenburg J.H.F. (1988) Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood 71: 430–435PubMedGoogle Scholar
  25. Fleming W.A. and McNeill T.A. (1976) Cellular responsiveness to stimulation in vitro. Increased responsiveness to colony stimulating factor of bone marrow colony forming cells treated with surface active agents and cyclic 3′, 5′AMP. J. Cell Physiol. 88: 323–330PubMedCrossRefGoogle Scholar
  26. Forrest J.A.H., Shearman D.J.C., Spence R. and Celestin L.R. (1975) Neutropenia associated with metiamide. Lancet, 1: 392–393PubMedCrossRefGoogle Scholar
  27. Gespach C., Saal F., Cost H. and Abita J.P. (1982) Identification and characterization of surface receptors for histamine in the human promyelocytic leukemia cell line HL-60. Comparison with human peripheral neutrophils. Mol. Pharmacol., 22: 547–553PubMedGoogle Scholar
  28. Gespach C., Marrec N. and Belitrand N. (1985a) Relationship between 3H-histamine uptake and H2-receptors in the human promyelocytic leukemia cell line HL-60. Agents Actions, 16: 279–283PubMedCrossRefGoogle Scholar
  29. Gespach C., Cost H. and Abita J.-P. (1985b) Histamine H2 receptor activity during the differentiation of the human monocytic-like cell line U-937. Comparison with prostaglandins and isoproterenol. FEBS Lett., 184: 207–213PubMedCrossRefGoogle Scholar
  30. Gespach C., Courillon-Mallet A., Launay J.M., Cost H. and Abita J.-P. (1986b) Histamine H2 receptor activity and histamine metabolism in human U-937 monocyte-like cells and human peripheral monocytes. Agents Actions, 18: 124–128PubMedCrossRefGoogle Scholar
  31. Gowda S.D., Koler R.D. and Bagby G.C. Jr. (1986) Regulation of c-myc expression during growth and differentiation of normal and leukemic human myeloid progenitor cells. J. Clin. Invest., 77: 271–278PubMedCrossRefGoogle Scholar
  32. Graham H.T., Lowry O.H., Wheelwright F., Lenz M.A. and Parish H.H. Jr. (1955) Distribution of histamine among leukocytes and platelets. Blood, 10: 467–481PubMedGoogle Scholar
  33. Harper R.A., Flaxman B.A. and Chopra D.P. (1974) Mitotic response of normal and psoriatic keratinocytes in vitro to compounds known to affect intracellular cAMP. J. Invest. Dermatol., 62: 384–387PubMedCrossRefGoogle Scholar
  34. Hatamochi A., Fujiwara K. and Ueki H. (1985) Effects of histamine on collagen synthesis by cultured fibroblasts derived from guinea pig skin. Arch. Dermatol. Res., 277: 60–64PubMedCrossRefGoogle Scholar
  35. Hay L.J., Vacro R.L., Code C.F. and Wangensteen O.H. (1942) The experimental production of gastric and duodenal ulcers in laboratory animals by the intramuscular injection of histamine in beeswax. Surg. Gynecol. Obstet., 75: 170–182Google Scholar
  36. Hidaka H., Inagaki M., Kawamoto S. and Sakai Y. (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry, 23: 5036–5041PubMedCrossRefGoogle Scholar
  37. Idvall J. (1979) Cimetidine-associated thrombocytopenia. Lancet, 2: 159PubMedCrossRefGoogle Scholar
  38. Iizuka H., Adachi K., Halprin K.M. and Levine V. (1978) Cyclic AMP accumulation in psoriatic skin: differential responses to histamine. AMP and epinephrine by the uninvolved and involved epidermis. J. Invest. Dermatol., 70: 250–253PubMedCrossRefGoogle Scholar
  39. Imaizumi, M. and Breitman, T.R. (1988) Changes in c-myc, c-fms and N-ras proto-oncogene expression associated with retinoic acid-induced monocytic differentiation of human leukemia. Cancer Res., 48: 6733–6738PubMedGoogle Scholar
  40. Johnson M.McI., Black A.E., Hughes A.S.B. and Clarke S.W. (1977) Leucopenia with cimetidine. Lancet, 2: 1226–1227CrossRefGoogle Scholar
  41. Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A. and Kaneko M. (1987) K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun., 142: 436–440PubMedCrossRefGoogle Scholar
  42. Kiss Z., Deli E., Vogler W.R. and Kuo J.F. (1987) Anti-leukemic agent alkyllysophospholipid regulates phosphorylation of distinct proteins in HL-60 and K-562 cells and differentiation of HL-60 cells prompted by phorbol ester. Biochem. Biophys. Res. Commun., 42: 661–666CrossRefGoogle Scholar
  43. Klotz S.A. and Kay B.F. (1978) Cimetidine and agranulocytosis. Ann. Intern. Med., 88: 579–580PubMedGoogle Scholar
  44. Knight D.E. and Scrutton M.C. (1984) Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature, 309: 66–68PubMedCrossRefGoogle Scholar
  45. Kobayasi Y., Appella E., Yamada M., Copeland T.D., Oppenheim J.J. and Matsushima K. (1988) Phosphorylation of intracellular receptors of human IL-1. J. Immunol., 140: 2279–2287Google Scholar
  46. Koeffler H.P. (1983) Induction of differentiation of human acute myelogenious leukemia cells: Therapeutic implications. Blood, 62: 709–721PubMedGoogle Scholar
  47. Lanotte M., Metcalf D. and Dexter T.M. (1982) Production of monocyte/macrophage colony- stimulating factor by preadipocyte cell lines derived from murine marrow stroma. J. Cell. Physiol., 112: 123–127PubMedCrossRefGoogle Scholar
  48. Liebermann D.A. and Hoffman-Liebermann B. (1989) Proto-oncogene expression and dissection of the myeloid growth to differentiation developmental cascade. Oncogene, 4: 583–592PubMedGoogle Scholar
  49. Lin H.-S., Lokekshwar B.L. and Hsu J.R. (1989) Both granulocyte-macrophage CSF and macrophage CSF control the proliferation and survival of the same subset of alveolar macrophages. J. Immunol., 142: 515–519PubMedGoogle Scholar
  50. Lingberg S. and Tönqvist Å. (1966) The inhibitory effect of aminoguanidine on histamine catabolism in human pregnancy. Acta Obstet. Gynecol. Scand., 45: 131–139CrossRefGoogle Scholar
  51. Lotem J. and Sachs L. (1987) Regulation of cell-surface receptors for hematopoietic differentiation-inducing protein MGI-2 on normal and leukemic myeloid cells. Int. J. Cancer, 40: 532–539PubMedCrossRefGoogle Scholar
  52. Marks R.M., Roche W.R., Czemiecki M., Penny R. and Nelson D.S. (1986) Mast cell granules cause proliferation of human micro vascular endothelial cells. Lab. Invest., 55: 289–294PubMedGoogle Scholar
  53. Maslinski C.Z., Kierska D., Sasiak K. and Adamas B. (1984) Histamine and its catabolism in tumor-bearing rat and mouse. Agents Actions, 14: 497–500PubMedCrossRefGoogle Scholar
  54. McCachren S.S. Jr., Nichols J., Kaufman R.E. and Niedel J.E. (1986) Dibutyric cyclic adenosine monophosphate reduces expression of c-myc during HL-60 differentiation. Blood, 68: 412–416PubMedGoogle Scholar
  55. Mochizuki D.Y., Eisenman J.R., Conlon P.J., Larsen A.D. and Tushinski R.J. (1987) Interleukin 1 regulates hematopoietic activity, a role previously ascribed to hemopoietin 1. Proc. Natl. Acad. Sci. USA 84: 5267–5271PubMedCrossRefGoogle Scholar
  56. Nakao S., Matsushima K. and Young N. (1989) Decreased interleukin 1 production in aplastic anaemia. Br. J. Haematol., 71: 431–436PubMedCrossRefGoogle Scholar
  57. Nakaya N. and Tasaka K. (1988a) The influence of histamine on precursors of granulocytic leukocytes in murine bone marrow. Life Sci., 42: 999–1010PubMedCrossRefGoogle Scholar
  58. Nakaya N. and Tasaka K. (1988b) Histamine incorporation into murine myeloblasts and promyelocytes. Formation of a histamine transport system. Biochem. Pharmacol., 37: 4523–4530PubMedCrossRefGoogle Scholar
  59. Nicola N.A., Peterson L., Hilton D.J. and Metcalf D. (1988) Cellular processing of murine colony-stimulating factor (multi-CSF, GM-CSF, G-CSF) receptors by normal hemopoietic cells and cell lines. Growth Factors, 1, 41–49PubMedCrossRefGoogle Scholar
  60. Nomura H., Imazeki I., Oheda M., Kubota N., Tamura M., Ono M., Ueyama Y. and Asano S. (1986) Purification and characterization of human granulocyte colony-stimulating factor (G-CSF). EMBO J., 5: 871–876PubMedGoogle Scholar
  61. Nonaka T., Mio M., Doi M. and Tasaka K. (1992) Histamine-induced differentiation of HL-60 cells. The role of cAMP and protein kinase A. Biochem. Pharmacol., 44: 1115–1121PubMedCrossRefGoogle Scholar
  62. Ohta Y., Akiyama T., Nishida E. and Sakai H. (1987) Protein kinase C and c AMP- dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett, 222: 305–310PubMedCrossRefGoogle Scholar
  63. Platzer E., Simon S. and Kalden J.R. (1988) Human granulocyte colony stimulating factor: Effects of human long-term bone marrow cultures. Blood Cells, 14: 463–469PubMedGoogle Scholar
  64. Plet A., Evain D. and Anderson W.B. (1982) Effect of retinoic acid treatment of F9 embryonal carcinoma cells on the activity and distribution of cAMP dependent protein kinase. J. Biol. Chem., 257: 889–893PubMedGoogle Scholar
  65. Radermecker M. and Maldague M.-P. (1981) Depression of neutrophil chemotaxis in atopic individuals. An H2 histamine receptor response. Int. Arch. Allergy Appl. Immunol., 65: 144–152PubMedCrossRefGoogle Scholar
  66. Rapoport A.P., Abboud C.N. and DiPersio J.F. (1992) Granulocyte-macrophage colony- stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF): Receptor biology, signal transduction, and neutrophil activation. Blood Rev., 6: 43–57PubMedCrossRefGoogle Scholar
  67. Rocklin R.E. and Haberek-Davidson A. (1981) Histamine activates suppressor cells in vitro using a coculture technique. J. Clin. Immunol., 1: 73–79PubMedCrossRefGoogle Scholar
  68. Rocklin R.E., Greineder D. and Melmon K.L. (1979) Histamine-induced suppressor factor (HSF): further studies on the nature of the stimulus and the cell which produces it. Cell. Immunol., 44: 404–415PubMedCrossRefGoogle Scholar
  69. Rosenwasser L.J. and Dinarello C.A. (1981) Ability of human leukocytic pyrogen to enhance hemagglutinin induced murine thmocyte proliferation. Cell. Immunol., 63: 134–142PubMedCrossRefGoogle Scholar
  70. Salehi Z., Taylor J.D. and Niedel J.E. (1988) Dioctanoylglycerol and phorbol esters regulate transcription of c-myc in human promyelocytic leukemia cells. J. Biol. Chem., 263: 1898–1903PubMedGoogle Scholar
  71. Sawutz D.G., Kalinyak K., Whitsett J.A., Johnson C.L. (1984) Histamine H2-receptor desensitization in HL-60 human promyelocytic leukemia cells. J. Pharmacol. Exp. Ther., 231: 1–7PubMedGoogle Scholar
  72. Schwartz J.-C., Arrang J.-M., Bouthenet M.-L., Garbarg M., Pollard H. and Raut M. (1991) Histamine receptors in brain, in ‘Handbook of Experimental Pharmacology, vol. 97. Histamine and histamine antagonists’ (ed. Uväns B.), Springer-Verlag, Berlin, pp. 191–242Google Scholar
  73. Spotts G.D. and Hann S.R. (1990) Enhanced translocation and increased turnover of c-myc proteins occur during differentiation of murine erythroleukemia cells. Mol. Cell. Biol., 10: 3952–3964PubMedGoogle Scholar
  74. Tasaka K. (1991) Histamine and the Blood, in ‘Handbook of Experimental Pharmacology, vol. 97. Histamine and histamine antagonists’ (ed. Uvnäs B.), Springer-Verlag, Berlin, pp. 473–510Google Scholar
  75. Tasaka K. and Code C.F. (1964) Histamine leukocytosis. Fed. Proc. 23: 471Google Scholar
  76. Tasaka K. and Nakaya N. (1987) The relationship between incorporation of histamine and differentiation of neutrophil progenitors in murine bone marrow. Agents Actions, 20: 320–323PubMedCrossRefGoogle Scholar
  77. Tasaka K., Nakaya N. and Code C.F. (1992a) Histamine leukocytosis. I. Effect of histamine on peripheral leukocyte counts. Meth. Find. Exp. Clin. Pharmacol., 14: 667–675Google Scholar
  78. Tasaka K., Shorter R.G. and Code C.F. (1992b) Histamine leukocytosis. II. Source of histamine leukocytosis. Meth. Find. Exp. Clin. Pharmacol., 14: 799–804Google Scholar
  79. Tasaka K., Mio M., Shimazawa M. and Nakaya N. (1993) Histamine-induced production of interleukin-lor from murine bone marrow stromal cells and its inhibition by H2 blockers. Mol. Pharmacol., 43: 365–371PubMedGoogle Scholar
  80. Tasaka K., Doi M., Nakaya N. and Mio M. (1994) Reinforcement effect of histamine on the differentiation of murine myeloblasts and promyelocytes: Extemalization of G-CSF receptors induced by histamine. Mol. Pharmacol., 45: 837–845PubMedGoogle Scholar
  81. Voorhees J.J., Duell E.A., Bass L.J., Powell J.A. and Harrell E.R. (1972) The cyclic AMP system in normal and psoriatic epidermis. J. Invest. Dermatol.,59: 114–120PubMedCrossRefGoogle Scholar
  82. Walker F., Nicola N.A., Metcalf D. and Burgess A.W. (1985) Hierarchical down-modulation of hemopoietic growth factor receptors. Cell, 43: 269–276PubMedCrossRefGoogle Scholar
  83. Zsebo K.M., Yuschenkoff V.N., Schiffer S., Chang D., McCall E., Dinarello C.A., Brown M.A., Altrock B. and Bagby G.C. (1988) Vascular endothelial cells and granulopoiesis: Interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71: 99–103PubMedGoogle Scholar
  84. Zucali J.R., Dinarello C.A., Obion D.J., Gross M.A., Anderson L. and Weiner R.S. (1986) Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2. J. Clin. Invest., 77: 1857–1863PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1994

Authors and Affiliations

  • Kenji Tasaka
    • 1
  1. 1.The Department of Pharmacology in the Faculty of Pharmaceutical SciencesOkayama UniversityOkayamaJapan

Personalised recommendations