Skip to main content

Role of Ca2+ and cAMP in histamine release from mast cells

  • Chapter

Abstract

It is well known that an increase in intracellular Ca2+ concentrations and subsequent activation of Ca2+ -dependent pathways, such as calmodulin, protein kinase C and cytoskeletons, are prerequisite for the histamine release from mast cells. On the other hand, an increase in intracellular concentrations of cAMP is effective in inhibiting the histamine release from mast cells. Many antiallergic drugs have been developed based on this consequence either to inhibit the increase in intracellular Ca2+ level or to increase intracellular cAMP concentrations of mast cells. In this chapter, the roles of Ca2+ and cAMP in the histamine release from mast cells are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif A.A. (1986) Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev., 38: 227–272

    PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G., Bhakdi S. and Gratzl (1985) Minimal requirements for exocytosis: a study using PC12 cells permeabilized with staphylococcal α-toxin. J. Biol Chem., 260: 12730–12734

    PubMed  CAS  Google Scholar 

  • Akagi M., Mio M., Tasaka K and Kiniwa S. (1983) Mechanism of histamine release inhibition induced by azelastine. Pharmacometrics, 26: 191–198

    CAS  Google Scholar 

  • Alm P.E. and Bloom G.D. (1982) Cyclic nucleotide involvement in histamine release from mast cells. A reevaluation. Life Sci., 30: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Amende L.M. and Donlon M.A. (1985) Isolation of cellular membranes from rat mast cells. Biochim. Biophys. Acta, 812: 713–720

    Article  PubMed  CAS  Google Scholar 

  • Ala’i R. and Ralph R.K (1986) Cyclic AMP and Ca2+ uptake by mastocytoma mitochondria. Ceo. Calcium, 7: 13–27

    Article  Google Scholar 

  • Baker P.F. and Knight D.E. (1981) Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Phil Trans. R Soc. Lond. B. Biol Sci., 296: 83–103

    Article  CAS  Google Scholar 

  • Baldassare J.J., Knipp M.A., Henderson P.A. and Fisher G.J. (1988) GTPγS-stimulated hydrolysis of phosphatidylinositol-4, 5-bisphosphate by soluble phospholipase C from human platelets requires soluble GTP-binding protein. Biochem. Biophys. Res. Commun., 154: 351–357

    Article  PubMed  CAS  Google Scholar 

  • Barrett KE. and Pearce F.L. (1983) A comparison of histamine secretion from isolated peritoneal mast cells of the mouse and rat. Int. Arch. Allergy Appl. Immunol., 72: 234–238

    Article  PubMed  CAS  Google Scholar 

  • Beaven M.A., Roger J., Moore J.P. Hesketh T.R., Smith G.A. and Metcalfe J.C. (1984) The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J. Biol. Chem., 259: 7129–7136

    PubMed  CAS  Google Scholar 

  • Bennet J.P., Cockcroft S. and Gomperts B.D. (1981) Rat mast cells permeabilized with ATP secrete histamine in response to calcium ions buffered in the micromolar range. J. Physiol., 317: 335–345

    Google Scholar 

  • Berridge M.J. (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J., 220: 345–360

    PubMed  CAS  Google Scholar 

  • Berridge M.J. and Irvine R.F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Borgers M., Thone F.J.M., Xhonneux B.J.M. and de Clerck F.F.P. (1983) Localization of calcium in red blood cells. J. Histochem. Cytochem., 31: 1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Brass L.F. and Joseph S.K (1985) A role for inositol triphosphate in intracellular Ca2+ mobilization and granule secretion in platelets. J. Biol. Chem., 260: 15172–15179

    PubMed  CAS  Google Scholar 

  • Burgess G.M., McKinney J.S., Fabiato A., Leslie B.A. and Putney J.W. (1983) Calcium pools in saponin-penneabilized guinea pig hepatocytes. J. Biol. Chem., 258: 15336–15345

    PubMed  CAS  Google Scholar 

  • Burgoyne RD. (1987) Control of exocytosis. Nature, 328: 112–113

    Article  PubMed  CAS  Google Scholar 

  • Cantley L.C., Josephson L., Warner R, Yanagisawa M., Lechene C. and Guidotti G. (1977) Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem., 252: 7421–7423

    PubMed  CAS  Google Scholar 

  • Cantwell M.E. and Foreman J.C. (1987) Phorbol esters induced a slow, non-cytotoxic release of histamine from rat peritoneal mast cells. Agents Actions, 20: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Castagna M., Takai Y., Kaibuchi K, Sano K, Kikkawa U. and Nishizuka Y. (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem., 257: 7847–7851

    PubMed  CAS  Google Scholar 

  • Chakravarty N. and Nielsen E.M. (1985) Calmodulin in mast cells and its role in histamine release. Agents Actions, 16: 122–125

    Article  PubMed  CAS  Google Scholar 

  • Chiou C.Y. and Malagodi M.H. (1975) Studies on the mechanism of action of a new Ca2+ antagonist, 8-(N, N-diethylamino)-octyl 3, 4, 5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br. J. Pharmacol., 53: 279–285

    PubMed  CAS  Google Scholar 

  • Church M.K and Gradidge C.F. (1980) Oxatomide: inhibition and stimulation of histamine release from human lung and leukocytes in vitro. Agents Actions, 10: 4–7

    Article  PubMed  CAS  Google Scholar 

  • de Clark F.,. van Reempts J. and Borgers M. (1981) Comparative effects of oxatomide on the release of histamine from rat peritoneal mast cells. Agents Actions, 11: 184–192

    Article  Google Scholar 

  • Cockcroft S., Barrowman M.M. and Gomperts B.D. (1985) Breakdown and synthesis of polyphosphoinositides in fMet-Leu-Phe stimulated neutrophils. FEBS Lett., 181: 259–263

    Article  PubMed  CAS  Google Scholar 

  • Coussens L., Parker P.J., Rhee L., Yang-Feng T.L., Chen E., Waterfield M.D., Francke U. and Ullrich A. (1986) Multiple, distinct fonns of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science, 233: 859–866

    Article  PubMed  CAS  Google Scholar 

  • Curtis B.M. and Catterall W.A. (1985) Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA, 82: 2528–2532

    Article  PubMed  CAS  Google Scholar 

  • de Duve C., Pressman B.C., Gianetto R, Wattiaux R and Appelmans F. (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J., 60: 604–617

    Google Scholar 

  • Edelman A.M., Blumenthal D.K and Krebs E.G. (1987) Protein serine-threonine kinase. Ann. Rev. Biochern., 56: 567–614

    Article  CAS  Google Scholar 

  • Endo M. (1977) Calcium release from the sarcoplasmic reticulum. Physiol. Rev., 57: 71–108

    PubMed  CAS  Google Scholar 

  • Ennis M., Atkinson G and Pearce F.L. (1980a) Inhibition of histamine release induced by compound 48/80 and peptide 401 in the presence and absence of calcium. Implication for the mode of action of antiallergic compounds. Agents Actions, 10: 222–228

    Article  PubMed  CAS  Google Scholar 

  • Ennis M., Truneth A., White J.R. and Pearce F.L. (1980b) Calcium pools involved in histamine release from rat mast cells. Int. Arch. Arch. Allergy Appl. Immunol., 62: 467–471

    Article  CAS  Google Scholar 

  • Fewtrell C.M.S., Foreman J.C., Jordan C.C., Oehme P., Renner H. and Stewart J.M. (1982) The effects of substance P on histamine release and 5-hydroxytryptamine release in the rat. J. Physiol., 330: 393–411

    PubMed  CAS  Google Scholar 

  • Fox P.C., Basciano L.K and Siraganian RP. (1982) Mouse mast cell activation and desensitization for immune aggregate-induced histamine release. J. Immunol., 129: 314–319

    PubMed  CAS  Google Scholar 

  • Garteiz D.A, Hook R.H., Walker B.J. and Okerholm R.A (1982) Pharmacokinetics and biotransfonnation studies of terfenadine in man. Arzneim. -Forsch., 32: 1185–1190

    CAS  Google Scholar 

  • Gennis R.B. (1989) Biomembranes. In Springer Advanced Texts in Chemistry. New York: Springer-Verlag

    Google Scholar 

  • Gomperts B.D. (1983) Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature, 306: 64–66

    Article  PubMed  CAS  Google Scholar 

  • Grosman N. (1986) Effects of TMB-8 on histamine release from isolated rat mast cells. Int. Arch. Allergy Appl. Immunol., 79: 253–258

    Article  CAS  Google Scholar 

  • Haslam R.J., Davidson M.M.L., Davies T., Lynham J.A and McClenagham M.D. (1978) Regulation of blood platelet function by cyclic nucleotides. Adv. Cyclic Nucleotide Res., 9: 533–552

    PubMed  CAS  Google Scholar 

  • Hata Y., Kaibuchi K, Kawamura S., Hiroyoshi M., Shirataki H. and Takai Y. (1991) Enhancement of the actions of smg p21 GDP/GTP exchange protein by protein kinase A-catalyzed phosphorylation of smg p21. J. Biol. Chem., 266: 6571–6577

    PubMed  CAS  Google Scholar 

  • Hayashi H., Ichikawa A, Saito T. and Tomita K (1976) Inhibitory role of cyclic adenosine 3: 5-monophosphate in histamine release from rat peritoneal mast cells in vitro. Biochem. Pharmacol., 25: 1907–1913

    Article  PubMed  CAS  Google Scholar 

  • Hidaka H. and Tanaka T. (1983) Naphthalenesulfonamides as calmodulin antagonists. Methods Enzymol., 102: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Hidaka H., Inagaki M., Kawamoto S. and Sasaki Y. (1984) Isoquinoline-sulfonamide, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry, 23: 5036–5041

    Article  PubMed  CAS  Google Scholar 

  • Hirata M., Suematsu E., Hashimoto T., Hamachi T. and Koga T. (1984) Release of Ca2+ from a non-mitochondrial store site in peritoneal macro phages treated with saponin by inositol 1, 4, 5-trisphosphate. Biochem. J., 223: 229–236

    PubMed  CAS  Google Scholar 

  • Hirata M., Kukita M., Sasaguri T., Suematsu E., Hashimoto T. and Koga T. (1985) Increase in Ca2+ penneability of intracellular Ca2+ store membrane of saponin-treated guinea pig peritoneal macrophage by inositol 1, 4, 5-trisphosphate. J. Biochem., 97: 1575–1582

    PubMed  CAS  Google Scholar 

  • Howell T.W. and Gomperts B.D. (1987) Rat mat cells penneabilized with streptolysin O secrete histamine in response to Ca2+ at concentrations buffered in the micromolar range. Biochem. Biophys. Acta, 927: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Imai A, Ishizuka Y., Nakashima S. and Nozawa Y. (1984a) Differential activation of membrane phospholipid turnover by compound 48/80 and A23187 in rat mast cells. Arch. Biochem. Biophys., 232: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Imai S., Nakazawa H., Imai H. and Nabata H. (1984b) Effects of procaine on the isolated dog coronary artery. Arch. Int. Pharmacodyn., 271: 98–105

    PubMed  CAS  Google Scholar 

  • Itoh T., Kanmura Y., Kuriyama H. and Sasaguri T. (1985) Nitroglycerine- and isoprenalineinduced vasodilatation: assessment from actions of cyclic nucleotides. Br. J. Pharmacol., 84: 393–406

    PubMed  CAS  Google Scholar 

  • Izushi K and Tasaka K (1989) Histamine release from, β-escin-penneabilized rat peritoneal mast cells and its inhibition by intracellular Ca2+ blockers, calmodulin inhibitors and cAMP. Immunopharmacology, 18: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Izushi K and Tasaka K (1991) Essential role of A TP and possibility of activation of protein kinase C in Ca2+ -dependent histamine release from penneabilized rat peritoneal mast cells. Pharmacology, 42: 297–308

    Article  PubMed  CAS  Google Scholar 

  • Izushi K. and Tasaka K. (1992) Ca2+ -induced translocation of protein kinase C during Ca2+ -dependent histamine release from beta-escin-penneabilized rat mast cells. Pharmacology, 44: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Izushi K., Fujiwara Y. and Tasaka K. (1992a) Identification of vimentin in rat peritoneal mast cells and its phosphorylation in association with histamine release. Immunopharmacology, 23: 153–161

    Article  PubMed  CAS  Google Scholar 

  • Izushi K., Shirasaka T., Chokki M. and Tasaka K. (1992) Phosphorylation of smg p21B in rat peritoneal mast cells in association with histamine release by dibutyryl-cAMP. FEBS Lett., 314: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Johansen T. (1980) Adenosine triphosphate level during anaphylactic histamine release in rat mast cells in vitro. Effects of glycolytic and respiratory inhibitors. Eur. J. Pharmacol., 58: 107–115

    Article  Google Scholar 

  • Kase H., Iwahasi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A. and Kaneko M. (1987) K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun., 142: 436–440

    Article  PubMed  CAS  Google Scholar 

  • Katakami Y., Kaibuchi K., Sawamura M., Takai Y. and Nishizuka Y. (1984) Synergic action of protein kinase C and calcium for histamine release from rat peritoneal mast cells. Biochem. Biophys. Res. Commun., 12: 573–578

    Article  Google Scholar 

  • Kawata M., Kikuchi A., Hoshijima M., Yamamoto K., Hashimoto E., Yamamura H and Takai Y. (1989) Phosphorylation of smg p21, a ras p21-like GTP-binding protein, by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin E1 in intact human platelets. J. Biol. Chem., 264: 15688–15695

    PubMed  CAS  Google Scholar 

  • Kennerly D.A. (1987) Diacylglycerol metabolism in mast cells. J. Biol. Chem., 262: 16305–16313

    PubMed  CAS  Google Scholar 

  • Kennerly D.A., Sullivan T.J. and Parker C.W. (1979) Activation of phospholipid metabolism during mediator release from stimulated rat mast cells. J. Immunol., 122: 152–159

    PubMed  CAS  Google Scholar 

  • Kikkawa U., Takai Y., Minakuchi R, Inohara S. and Nishizuka Y. (1982) Calcium-activated, phospholipid-dependent protein kinase from rat brain. J. Biol. Chem., 257: 13341–13348

    PubMed  CAS  Google Scholar 

  • Knight D.E. and Scrutton M.C. (1984) Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature, 309: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi E., Nakano H., Morimoto M., Tamaoki T. (1989) Calphostin C (UCN-I028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 159: 548–553

    Article  PubMed  CAS  Google Scholar 

  • Koopmann W.R and Jackson RC. (1990) Calcium- and guanine-nucleotide-dependent exocytosis in penneabilized rat mast cells. Biochem. J., 265: 363–373

    Google Scholar 

  • Kosaka Y., Ogita K., Ase K., Nomura H., Kikkawa U. and Nishizuka Y. (1988) The heterogeneity of protein kinase C in various rat tissues. Biochem. Biophys. Res. Commun., 15: 973–981

    Article  Google Scholar 

  • Kreye V.A.W., Ruegg J.C. and Hofmann F. (1983) Effects of calcium-antagonist and calmodulin antagonist drugs on calmodulin dependent contractions of chemically skinned vascular smooth muscle from rabbit renal arteries. Naunyn-Schmied. Archs. Pharmacol., 323: 85–89

    Article  CAS  Google Scholar 

  • Kurosawa M. and Parker C.W. (1986) Characterization of calcium-activated, phospholipiddependent protein kinase from rat serosal mast cells and RBL-l cells. Cell. Immunol., 103: 381–393

    Article  PubMed  CAS  Google Scholar 

  • Lapetina E.G. and Reep B.R. (1987) Specific binding of (α- 32P)GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C. Proc. Nalt. Acad. Sci. USA, 84: 2261–2265

    Article  CAS  Google Scholar 

  • Lindau M. and NüBe O. (1987) Pertussis toxin does not effect the time course of exocytosis in mast cells stimulated by intracellular application of GTP-γ-S. FEBS Lett., 222: 317–321

    Article  PubMed  CAS  Google Scholar 

  • Martonosi A.N. (1984) Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. PhysioL Rev., 64: 1240–1320

    PubMed  CAS  Google Scholar 

  • Mio M., Izushi K and Tasaka K (1991) Substance P-induced histamine release from rat peritoneal mast cells and its inhibition by antiallergic agents and calmodulin inhibitors. Immunopharmacowgy, 22: 59–66

    Article  CAS  Google Scholar 

  • Mitchell R.H. (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta, 415: 81–147

    Google Scholar 

  • Nago S., Nagata K, Kohmura Y., Ishizuka T. and Nozawa Y. (1987) Redistribution of phospholipid/ Ca2+ -dependent protein kinase in mast cells activated by various agonists. Biochem. Biophys. Res. Commun., 142: 645–653

    Article  Google Scholar 

  • Nakamura T. and Vi M. (1985) Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J. Biol. Chem., 260: 3584–3593

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1986) Studies and perspectives of protein kinase C. Science, 233: 305–312

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell P.H. (1975) High resolution two dimensional electrophoresis of proteins. J. Biol. Chem., 250: 4007–4021

    PubMed  Google Scholar 

  • O’Flaherty J.T., Jacobson D.P., Redman J.F. and Rossi A.G. (1990) Translocation of protein kinase C in human polymorphonuclear neutrophils. J. Biol. Chem., 265: 9146–9152

    PubMed  Google Scholar 

  • Ohmori K, Ishii H., Takei Y., Shuto K and Nakamizo N. (1982a) Pharmacological studies of oxatomide. 3. Effect on experimental asthma and Schultz-Dale response in rats and guinea pigs. Folia Pharmacol. Jpn., 80: 481–493

    Article  CAS  Google Scholar 

  • Ohmori K, Ishii H., Takei Y., Shuto K and Nakamizo N. (1982b) Pharmacological studies of oxatomide. 4. Effect on the histamine release from rat isolated peritoneal mast cells (PEC) and lung slices. Folia Pharmacol. Jpn., 80: 441–449

    Article  CAS  Google Scholar 

  • Ohmori T., Kikuchi A., Yamamoto K, Kawata M., Kondo J. and Takai Y. (1988) Identification of a platelet Mr 22,000 GTP-binding protein as the novel smg-21 gene product having the same putative effector domain as the ras gene products. Biochem. Biophys. Res. Commun., 157: 670–676

    Article  PubMed  CAS  Google Scholar 

  • Ohmori T., Kikuchi A., Yamamoto K, Kim S. and Takai Y. (1989) Small molecular weight GTP-binding proteins in human platelet membranes. Purification and characterization of a novel GTP-binding protein with a molecular weight of 22,000. J. Biol. Chem., 264: 1877–1881

    PubMed  CAS  Google Scholar 

  • Ohsako S. and Deguchi T. (1983) Phosphatidic acid mimics the muscarinic action of acetylcholine in cultured bovine chromaffin cells. FEBS Lett., 152: 62–66

    Article  PubMed  CAS  Google Scholar 

  • Pang D.C. and Sperelakis N. (1983) Nifedipine, diltiazem, bepridil and verapamil uptakes into cardiac and smooth muscles. Eur. J. Pharmacol., 87: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Parker P.J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterlield M. D. and Ullrich A. (1986) The complete primary structure of protein kinase C - The major phorbol ester receptor. Science, 233: 853–859

    Article  PubMed  CAS  Google Scholar 

  • Patel KR (1981) The effect of calcium antagonist, nifedipine in exercise-induced asthma. Clin Allergy, 11: 429–432

    Article  PubMed  CAS  Google Scholar 

  • Peppers S.C. and Holz R W. (1986) Catecholamine secretion from digitonin-treated PC12 cells: effects of Ca2+, ATP and protein kinase C activators. J. Biol. Chem., 261: 14665–14669

    PubMed  CAS  Google Scholar 

  • Pershadsingh H.A. and McDonald J.M. (1980) A high affinity calcium-stimulated magnesiumdependent adenosine triphosphatase in rat adipocyte plasma membrane. J. Biol. Chem., 255: 4087–4093

    PubMed  CAS  Google Scholar 

  • Pocotte S.L., Frye RA., Senter RA., TerBush D.R, Less S.A. and Holz RW. (1985) Effects of phorbol esters on catecholamine secretion and protein phosphorylation in adrenal medullary cell culture. Proc. Natl. Acad. Sci. USA, 82: 930–934

    Article  PubMed  CAS  Google Scholar 

  • Pogolotti A.L. and Santi D.V. (1982) High-pressure liquid chromatography-ultraviolet analysis of intracellular nucleotides. Anal. Biochem., 126: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Pointer RH., Butcher FR and Fain J.N. (1976) Studies on the role of cyclic guanosine 3, 5-monophosphate and extracellular Ca2+ in the regulation of glycogenesis in rat liver cells. J. Biol. Chem., 251: 2987–2992

    PubMed  CAS  Google Scholar 

  • Prentki M., Wollheim C.B. and Lew P.D. (1984) Ca2+ homeostasis in permeabilized human neutrophils. J. Biol. Chem., 259: 13777–13782

    PubMed  CAS  Google Scholar 

  • Ritchie D.M., Sierchio J.N., Bishop C.M., Hedli C.C., Levinson S.L. and Capetola RJ. (1984) Evaluation of calcium entry blockers in several models of immediate hypersensitivity. J. Pharmacol. Exp. Ther., 229: 690–695

    PubMed  CAS  Google Scholar 

  • Spat A., Fabiat A. and Rubin RP. (1986) Binding of inositol trisphosphate by a liver microsomal fraction. Biochem. J., 233: 929–932

    PubMed  CAS  Google Scholar 

  • Spearman T.N. and Butcher F.R (1983) The effect of calmodulin antagonists on amylase release from the rat parotid gland in vitro. Pjlugers Arch., 397: 220–224

    Article  CAS  Google Scholar 

  • Sullivan T.J., Parker KL., Eisen S.A. and Parker C.W. (1975) Modulation of cyclic AMP in purified rat mast cells. II. Studies on the relationship between intracellular cyclic AMP concentrations and histamine release. J. Immunol., 114: 1480–1485

    PubMed  CAS  Google Scholar 

  • Tanaka T. and Hidaka H. (1980) Hydrophobic regions function in calmodulin-enzyme(s) interactions. J. Biol. Chem., 255: 11078–11080

    PubMed  CAS  Google Scholar 

  • Tasaka K (1986) Anti-allergic drugs. Drugs Today, 22: 101–133

    CAS  Google Scholar 

  • Tasaka K, Mio M. and Okamoto M. (1986a) Intracellular calcium release induced by histamine releasers and its inhibition by some antiallergic drugs. Ann. Allergy, 56: 464–469

    PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M. and Okamoto M. (1986b) Changes in intracellular Ca2+ distribution of rat peritoneal mast cells before and after histamine release. Agents Actions, 18: 61–64

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Akagi M. and Miyoshi K (1986c) Distribution of actin filaments in rat mast cells and its role in histamine release. Agents Actions, 18: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Akagi M., Mio M., Miyoshi K and Nakaya N. (1987a) Inhibitory effect of oxatomide on intracellular Ca mobilization, Ca uptake and histamine release, using rat peritoneal mast cells. Int. Arch. Allergy Appl. Immunol., 83: 348–353

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M. and Okamoto M. (1987b) The role of intracellular Ca2+ in the degranulation of skinned mast cells. Agents Actions, 20: 157–160

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Akagi M., Miyoshi K and Mio M. (1988) Role of microfilaments in the exocytosis of rat peritoneal mast cells. Int. Arch. Allergy Appl. Immunol., 87: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K and Mio M. (1989) Microfilament-associated degranulation of sensitized guinea-pig lung mast cells. Agents Actions, 27: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Sugimoto Y. and Mio M. (1990) Sequential analysis of histamine release and intracellular Ca2+ release from murine mast cells. Int. Arch. Allergy Appl. Immunol., 91: 211–213

    Article  PubMed  CAS  Google Scholar 

  • Tasaka K, Mio M., Fujisawa K and Aoki I. (1991) Role of microtubules on Ca2+ release from the endoplasmic reticulum and associated histamine release from rat peritoneal mast cells. Biochem. Pharmacol., 14: 1031–1037

    Google Scholar 

  • Tatham P.E.R. and Gomperts B.D. (1989) ATP inhibits onset of exocytosis in permeabilized mast cells. Biosci. Rep., 9: 99–109

    Article  PubMed  CAS  Google Scholar 

  • Tsein R.Y., Pozzan T. and Rink T.J. (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with anew, intracellularly trapped fluorescence indicator. J. Cell Biol., 94: 325–334

    Article  Google Scholar 

  • Wakelam M.J.O., Davies S.A., Houslay M.D., McKay I., Marshall C.J. and Hall A. (1986) Normal p21(N-ras) couples bombesin and other growth factor receptors to inositol phosphate production. Nature, 322: 173–176

    Article  Google Scholar 

  • Wang P., Nishihata J., Takabori E., Yamamoto K, Toyoshima S. and Osawa T. (1989) Purification and partial amino acid sequences of a phospholipase C-associated GTP-binding protein from calf thymocytes. J. Biochem., 105: 461–466

    PubMed  CAS  Google Scholar 

  • Wang T., Tsei L.I., Solaro J., Frassi de Gende A.O. and Schwartz A. (1979) Effects of potassium on vanadate inhibition of sarcoplasmic reticulum Ca2+ -ATPase from dog cardiac and rabbit skeletal muscle. Biochem. Biophys. Res. Commun., 91: 356–361

    Article  PubMed  CAS  Google Scholar 

  • Watson S.P., McConell R.T. and Lapetina E.G. (1984) The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J. Biol. Chem., 259: 13199–13203

    PubMed  CAS  Google Scholar 

  • Weiss G.B. (1974) Cellular pharmacology of lanthanum. Ann. Rev. Pharmacol., 14: 343–354

    Article  CAS  Google Scholar 

  • White J.R., Ishizaka T., Ishizaka K and Sha’afi R.I. (1984) Direct demonstration of increased intracellular concentration of free calcium as measured by quin-2 in stimulated rat peritoneal mast cell. Proc. Natl. Acad. Sci. USA, 81: 3978–3982

    Article  PubMed  CAS  Google Scholar 

  • White J.R., Pluznik D.H., Ishizaka K and Ishizaka T. (1985) Antigen-induced increase in protein kinase C activity in plasma membrane of mast cells. Proc. Natl. Acad. Sci. USA, 82: 8193–8197

    Article  PubMed  CAS  Google Scholar 

  • White KN. and Metzger H. (1988) Translocation of protein kinase C in rat basophilic leukemic cells induced by phorbol ester or by aggregation of IgE receptors. J. Immunol., 141: 942–947

    PubMed  CAS  Google Scholar 

  • Wick S.M. and Hepler P.K (1982) Selective localization of intracellular Ca2+ with potassium antimonate. J. Histochem. Cytochem., 30: 1190–1204

    Article  PubMed  CAS  Google Scholar 

  • Wilson S.P. and Kirshner N. (1983) Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J. Biol. Chem., 258: 4994–5000

    PubMed  CAS  Google Scholar 

  • Wolf B.A., Florholmen J., Colca J.R. and McDaniel M.L. (1987) GTP mobilization of Ca2+ from the endoplasmic reticulum of islets. Biochem. J., 242: 137–141

    PubMed  CAS  Google Scholar 

  • Yamamoto T., Kaibuchi K., Mizuno T., Hiroyoshi M., Shirataki H. and Takai Y. (1990) Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J. Biol. Chem., 265: 16626–16634

    PubMed  CAS  Google Scholar 

  • Yoshii N., Mio M. and Tasaka K. (1988) Ca uptake and Ca releasing properties of the endoplasmic reticulum in rat peritoneal mast cells. Immunopharmacology, 16: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Yoshii N., Mio M., Akagi M. and Tasaka K. (1991) Role of endoplasmic reticulum, an intracellular Ca2+ store, in histamine release from rat peritoneal mast cell. Immunopharmacology, 21: 13–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tasaka, K. (1994). Role of Ca2+ and cAMP in histamine release from mast cells. In: New Advances in Histamine Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68263-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68263-9_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68265-3

  • Online ISBN: 978-4-431-68263-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics