The role of histamine on learning and memory

  • Kenji Tasaka


It is well known that the central cholinergic system is intimately related to the modulation of learning (acquisition) and memory processes (retention and retrieval) in humans and animals (Haroutunian et al., 1985). Actually, there are many reports about the ameliorating effects of cholinergic drugs on memory impairment induced by transient cerebral ischemia (Yamamoto et al., 1987), electroshock (Sakurai et al., 1989) or anticholinergic drug administration (Yamamoto and Shimizu., 1987). On the other hand, it has been reported that classic H1 antagonists such as diphenhydramine, pyrilamine and promethazine provided potent depressant actions on the central nervous system (CNS) in many different situations including learning and memory (Winter and Flataker, 1951). Kamei et al. (1981a) demonstrated that diphenhydramine and promethazine induced not only a drowsy pattern in EEGs characterized by high voltage and slow waves but also an inhibition of the EEG arousal response induced by electrical stimulation of the midbrain reticular formation. Tasaka et al. (1985) reported that diphenhydramine, pyrilamine and promethazine caused a potent suppression of the two-way conditioned avoidance response (retardation of memory retrieval) in rats. In connection with this, de Almeida and Izquierdo (1988) found that immediate posttraining after intracerebroventricular (i.c.v.) administration of histamine at doses of 1 and 10 ng facilitated retention performance of step-down inhibitory avoidance behavior (passive avoidance response) measured 24hr after drug administration in rats. In addition, this histamine-induced effect was inhibited by the simultaneous administration of promethazine (1000 ng) and cimetidine (1000 ng), indicating that histamine-induced facilitation of memory retention is mediated via both H1 and H2 receptors. Bhattacharya (1990) also reported that histamine at doses of 1, 5 and 10 μ g produced a dose related dual effect on learning acquisition and retention of memory, with the lower two doses facilitating and high dose retarding the memory paradigms. In these two studies, however, normal animals were used for estimating the drug effect. This chapter provides information about the role of histamine on learning and memory not only in normal but also in some amnesic animals.


Response Latency Passive Avoidance Avoidance Response Memory Retrieval Active Avoidance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader, R., Weijnen, J.A.W.M. and Moleman, P.: Retention of a passive avoidance response as a function of the intensity and duration of electric shock. Psychon. Sci., 26, 125–128 (1972)Google Scholar
  2. Ahn, H.-S. and Barnett, A.: Selective displacement of [3H] mepyramine from peripheral vs. central nervous system receptors by loratadine, a non-sedating antihistamine. European J. Pharmacol., 127, 153–155 (1986)CrossRefGoogle Scholar
  3. Alvarez, E.O. and Banzán, A.M.: Histamine in dorsal and ventral hippocampus. II. Effects of H1 and H2 histamine antagonists on exploratory behavior in male rats. Physiol. Behav., 37, 39–45 (1986)PubMedCrossRefGoogle Scholar
  4. Arrang, J.-M., Garbarg, M. and Schwartz, J.-C.: Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 302, 832–837 (1983)PubMedCrossRefGoogle Scholar
  5. Arrang, J.-M., Garbarg, M., Lancelot, J.-C., Lecomte, J.-M., Pollard, H., Robba, M., Schunack, W. and Schwartz, J.-C.: Highly potent and selective ligands for histamine H3-receptors. Nature, 327, 117–123 (1987)PubMedCrossRefGoogle Scholar
  6. Asdourian, D., Dark, J.G., Chiodo, L. and Papich, P.S.: Active avoidance in rats with unilateral hypothalamic and optic nerve lesions. Physiol. Behav., 19, 209–211 (1977)PubMedCrossRefGoogle Scholar
  7. Bhattacharya, S.K.: Central histamine receptors in learning and memory in rats. European J. Pharmacol., 183, 295 (1990)CrossRefGoogle Scholar
  8. Burešová, O., Bureš, J., Fifková, E., Vinogradova, O. and Weiss, T.: Functional significance of corticohippocampal connections. Exp. Neurol., 6, 161–172 (1962)PubMedCrossRefGoogle Scholar
  9. Cacabelos, R. and Alvarez, X.A.: Histidine decarboxylase inhibition induced by α-fluoro- methylhistidine provokes learning-related hypokinetic activity. Agents Actions, 33, 131–134 (1991)PubMedCrossRefGoogle Scholar
  10. Coyle, J.T., Price, D.L. and DeLong, M.R.: Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 212, 1184–1190 (1983)CrossRefGoogle Scholar
  11. de Almeida, M.A.M.R. and Izquierdo, I.: Intracerebroventricular histamine, but not 48/80, causes posttraining memory facilitation in the rat. Arch. int. Pharmacodyn., 291, 202–207 (1988)PubMedGoogle Scholar
  12. de Groot, J.: The rat forebrain in stereotaxic coordinates. Verh. K. Ned. Akad. Wet. Natuurkund., 52, 1–40 (1959)Google Scholar
  13. Devlin, J.P. and Hargrave, K.D.: Pulmonary and antiallergic drugs: Design and synthesis. In: Devlin, J.P. (ed) Pulmonary and Antiallergic Drugs. John Wiley & Sons, New York, pp.191–316, 1985Google Scholar
  14. Durant, G.J., Duncan, W.A.M., Ganellin, C.R., Parsons, M.E., Blakemore, R.C. and Rasmussen, A.C.: Impromidine (SK & F 92676) is a very potent and specific agonist for histamine H2 receptors. Nature, 276, 403–405 (1978)PubMedCrossRefGoogle Scholar
  15. Egashira, T., Murayama, F., Kimba, Y. and Yamanaka, Y.: Age-related decrements of cholinergic markers in aged rat brain. Japan. J. Pharmacol., 52 (suppl), 74P (1990)Google Scholar
  16. Feldberg, W. and Sherwood, S.L.: Injections of drugs into the lateral ventricle of the cat. J. Physiol., 123, 148–167 (1954)PubMedGoogle Scholar
  17. Ganellin, C.R.: Chemistry and structure-activity relationships of drugs acting at histamine receptors. In: Ganellin C.R. and Parsons, M.E. (ed) Pharmacology of Histamine Receptors. Wright-PSG, Bristol, pp. 10–102, 1982Google Scholar
  18. Garbarg, M., Barbin, G., Bischoff, S., Pollard, H. and Schwartz, J.C.: Dual localization of histamine in an ascending neuronal pathway and in non-neuronal cells evidenced by lesions in the lateral hypothalamic area. Brain Res., 106, 333–348 (1976)PubMedCrossRefGoogle Scholar
  19. Garbarg, M., Barbin, G., Rodergas, E. and Schwartz, J.C.: Inhibition of histamine synthesis in brain by α-fluoromethylhistidine, a new irreversible inhibitor: In vitro and in vivo studies. J. Neurochem., 35, 1045–1052 (1980)PubMedCrossRefGoogle Scholar
  20. Grossman, S.P.: Avoidance behavior and aggression in rats with transections of the lateral connections of the medial or lateral hypothalamus. Physiol. Behav., 5, 1103–1108 (1970)PubMedCrossRefGoogle Scholar
  21. Haas, H.L.: Histamine potentiates neuronal excitation by blocking a calcium-dependent potassium conductance. Agents Actions, 14, 534–537 (1984)PubMedCrossRefGoogle Scholar
  22. Haroutunian, V., Barnes, E. and Davis, K.L.: Cholinergic modulation of memory in rats. Psychopharmacology, 87, 266–271 (1985)PubMedCrossRefGoogle Scholar
  23. Inami, T., Tanaka, T., Sakurai, M. and Hayashi, S.: Learning impairment in aged, spontaneously hypertensive rats. Japan. J. Pharmacol., 52 (suppl), 355P (1990)Google Scholar
  24. Ikeda, Y. and Matsushita, K.: The learning, memory and drug effects in aged rats In: Tadokoro, S. (ed) Investigation of Antidementia Drug. Animal Experiments of Learning and Memory, (in Japanese), Seiwa Shoten, Pub. Tokyo, pp. 108–120, 1985Google Scholar
  25. Ishikawa, A., Ikeda, Y., Takato, M., Matsushita, H. and Hata, S.: The light-dark discriminative learning of aged rats. A comparison of the positive and negative reinforcement. Eighth International Congress of Pharmacology, p. 626, 1981Google Scholar
  26. Isaacson, R.L., Douglas, R.J. and Moore, R.Y.: The effect of radical hippocampal ablation on acquisition of avoidance response. J. Comp. Physiol. Psychol., 54, 625–628 (1961)CrossRefGoogle Scholar
  27. Kakihana, M., Yamazaki, N. and Nagaoka, A.: Effects of idebenone (CV-2619) on the concentrations of acetylcholine and choline in various brain regions of rats with cerebral ischemia. Japan. J. Pharmacol., 36, 357–363 (1984)CrossRefGoogle Scholar
  28. Kamei, C., Kiniwa, S., Ikegami, N. and Tasaka, K.: Effect of 4-(p-chlorobenzyl)-2-[N- methylperhydroazepinyl-(4)]-1-(2H)-phthalazinone hydrochloride (azelastine) on EEGs and behavior ir rats. Jpn. J. Clin. Pharmacol. Ther., 12, 297–310 (1981a)CrossRefGoogle Scholar
  29. Kamei, C., Chung, Y.H., Dabasaki, T. and Tasaka, K.: Species differences elicited by intraventricular injection of histamine on EEGs and behavior. Japan. J. Pharmacol., 31 (suppl), 86P (1981b)CrossRefGoogle Scholar
  30. Kamei, C., Dabasaki, T. and Tasaka, K.: Cataleptic effect of histamine induced by intraventric ular injection in mice. Japan. J. Pharmacol., 33, 1081–1084 (1983)CrossRefGoogle Scholar
  31. Kamei, C., Dabasaki, T. and Tasaka, K.: Effect of intraventricular injection of histamine on the pinna reflex in mice. Japan. J. Pharmacol., 35, 193–195 (1984)Google Scholar
  32. Kamei, C., Akahori, H. and Tasaka, K.: Influence of histamine and related compounds on the hypnotic effect of thiopental in mice. J. Pharmacobio-Dyn., 9, 112–116 (1986)PubMedCrossRefGoogle Scholar
  33. Kamei, C., Tsujimoto, S. and Tasaka, K.: Effects of cholinergic drugs and cerebral metabolic activators on memory impairment in old rats. J. Pharmacobio-Dyn., 13, 772–777 (1990a)PubMedCrossRefGoogle Scholar
  34. Kamei, C., Chung, Y.H. and Tasaka, K.: Influence of certain H1-blockers on the step- through active avoidance response in rats. Psychopharmacology, 102, 312–318 (1990b)PubMedCrossRefGoogle Scholar
  35. Kamei, C. and Tasaka, K.: Participation of histamine in the step-through active avoidance response aid its inhibition by H1-blockers. Japan. J. Pharmacol., 57, 473–482 (1991)CrossRefGoogle Scholar
  36. Kamei, C. and Tasaka, K.: Effect of intracerebroventricular injection of histamine on memory impairment induced by hippocampal lesions in rats. Japan. J. Pharmacol., 58 (suppl), 55P (1992)CrossRefGoogle Scholar
  37. Kamei, C., Okumura, Y. and Tasaka, K.: Influence of histamine depletion on learning and memory recollection in rats. Psychopharmacology, 111, 376–382 (1993a)PubMedCrossRefGoogle Scholar
  38. Kamei, C. and Tasaka, K.: Effect of histamine on memory retrieval in old rats. Biol. Pharm. Bull., 16, 128–132 (1993b)PubMedCrossRefGoogle Scholar
  39. Kaneko, T., Kitahara, A., Ozaki, S., Takizawa, K. and Yamatsu, K.: Effects of azelastine hydrochloride, a novel anti-allergic drug, on the central nervous system. Arzneim.-Forsch., 31, 1206–1212 (1981)Google Scholar
  40. Kollonitsch, J., Patchett, A.A., Marburg, S., Maycock, A.L., Perkins, L.M., Doldouras, G.A., Duggan, D.E. and Aster, S.D.: Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature, 274, 906–908 (1978)PubMedCrossRefGoogle Scholar
  41. Laduron, P.M., Janssen, P.F.M., Gommeren, W. and Leysen, J.E.: In vitro and in vivo binding characteristics of a new long-acting histamine H1-antagonist, astemizole. In: Astemizole: a new, non-sedative, long-acting H1-antagonist. The Medicine Publishing Foundation, Symposium Series 11, Oxford, pp. 11–23, 1983Google Scholar
  42. Lippa, A.S., Pelham, R.W., Beer, B., Critchett, D.J., Dean, R.L. and Bartus, R.T.: Brain cholinergic dysfunction and memory in aged rats. Neurobiol. Aging, 1, 13–19 (1980)PubMedCrossRefGoogle Scholar
  43. Maeyama, K., Watanabe, T., Yamatodani, A., Taguchi, Y., Kambe, H. and Wada, H.: Effect of α-fluoromethylhistidine on the histamine content of the brain of W/Wv mice devoid of mast cells: turnover of brain histamine. J. Neurochem., 41, 128–134 (1983)PubMedCrossRefGoogle Scholar
  44. Martin, U. and Römer, D.: The pharmacological properties of a new, orally active antianaphylactic Compound: ketotifen, a benzocycloheptathiophene. Arzneim.-Forsch., 28, 770–782 (1978)Google Scholar
  45. McNew, J.J. and Thompson, R.: Role of the limbic system in active and passive avoidance conditioning in the rat. J. Comp. Physiol. Psychol., 61, 173–180 (1966)PubMedCrossRefGoogle Scholar
  46. Monti, J.M., D’Angelo, L., Jantos, H. and Pazos, S.: Effects of α-fluoromethylhistidine on sleep and wakefulness in the rat. J. Neural. Transm., 72, 141–145 (1988)PubMedCrossRefGoogle Scholar
  47. Muñoz, C. and Grossman, S.P.: Some behavioral effects of selective neuronal depletion by kainic acid in the dorsal hippocampus of rats. Physiol. Behav., 25, 581–587 (1980)PubMedCrossRefGoogle Scholar
  48. Nakagawa, Y., Yamazaki, A., Ishima, T., Tamura, M., Ogasawara, T., Ukai, Y. and Kimura, K.: Age-related changes in learning abilities in Fischer 344 rats. Japan. J. Pharmacol, 49 (suppl), 267P (1989)CrossRefGoogle Scholar
  49. Nakahiro, M., Fujita, N., Fukuchi, I., Saito, K., Nishimura, T. and Yoshida, H.: Pantoyl-γ-aminobutyric acid facilitates cholinergic function in the central nervous system. J. Pharmacol. Exp. Ther., 232, 501–506 (1985)PubMedGoogle Scholar
  50. Ohmori, K., Ishii, H., Shuto, K. and Nakamizo, N.: Pharmacological studies on oxatomide: (5) Effect on the central and peripheral nervous systems. Folia pharmacol. japon., 81, 245–266 (1983a)CrossRefGoogle Scholar
  51. Ohmori, K., Ishii, H., Nito, M., Shuto, K. and Nakamizo, N.: Pharmacological studies on oxatomide (KW-4354). (7) Antagonistic effects on chemical mediators. Folia pharmacol. japon., 81, 399–409 (1983b)CrossRefGoogle Scholar
  52. Ohmori, K., Ishii, H. and Ishii, A.: Pharmacological studies on oxatomide (10) Antiallergic effects of oxatomide and other antiallergic drugs. Clin. Report, 21, 4045–4052 (1987)Google Scholar
  53. Oishi, R., Itoh, Y., Nishibori, M. and Saeki, K.: Effects of the histamine H3-agonist (R)-α- methylhistamine and the antagonist thioperamide on histamine metabolism in the mouse and rat brain. J. Neurochem., 52, 1388–1392 (1989)PubMedCrossRefGoogle Scholar
  54. Oka, M. and Shimizu, M.: A simple avoidance procedure for testing psychotropic drugs in mice. Japan. J. Pharmacol., 25, 121–127 (1975)CrossRefGoogle Scholar
  55. Onodera, K., Yamatodani, A. and Watanabe, T.: Effects of α-fluoromethylhistidine on locomotor activity, brain histamine and catecholamine contents in rats. Meth. Find. Exp. Clin. Pharmacol., 14, 97–105 (1992)Google Scholar
  56. Panula, P., Yang, H.-Y.T. and Costa, E.: Histamine-containing neurons in the rat hypothalamus. Proc. Nati. Acad. Sci. U.S.A., 81, 2572–2576 (1984)CrossRefGoogle Scholar
  57. Papsdorf, J.D. and Woodruff, M.: Effects of bilateral hippocampectomy on the rabbit’s acquisition of shuttle-box and passive-avoidance responses. J. Comp. Physiol. Psychol., 73, 486–489 (1970)PubMedCrossRefGoogle Scholar
  58. Paxinos, G. and Watson, C.: The rat brain in stereotaxic coordinates. Academic Press. San Diego, 1986Google Scholar
  59. Perry, E.K., Blessed, K.G., Tomlinson, B.E., Perry, R.H., Crow, T.J., Cross, A.J., Dockray, G.T., Dimaline, R. and Arregui, A.: Neurochemical activities in human temporal lobe related to aging and Alzheimer’s type changes. Neurobiol. Aging, 2, 251–256 (1981)PubMedCrossRefGoogle Scholar
  60. Reuse, J.J.: Comparisons of various histamine antagonists. Br. J. Pharmacol., 3, 174–180 (1948)Google Scholar
  61. Rich, I. and Thompson, R.: Role of the hippocampo-septal system, thalamus, and hypothalamus in avoidance conditioning. J. Comp. Physiol. Psychol., 59, 66–72 (1965)PubMedCrossRefGoogle Scholar
  62. Rigter, H., van Riezen, H. and de Wied, D.: The effects of ACTH- and vasopressin- analogues on CO2-induced retrograde amnesia in rats. Physiol. Behav., 13, 381–388 (1974)PubMedCrossRefGoogle Scholar
  63. Rüthrich, H.-L., Wetzel, W. and Matthies, H.: Memory retention in old rats: Improvement by orotic acid. In: Marsan, C.A. and Matthies, H. (ed) Neuronal Plasticity and Memory Formation. Raven Press, New York, pp. 227–230, 1982.Google Scholar
  64. Sakai, N., Onodera, K., Maeyama, K., Yanai, K. and Watanabe, T.: Effects of (S)-α- fluoromethylhistidine and metoprine on locomotor activity and brain histamine content in mice. Life Sci., 51, 397–405 (1992)PubMedCrossRefGoogle Scholar
  65. Sakurai, E., Niwa, H., Yamasaki, S., Maeyama, K. and Watanabe, T.: The disposition of a histidine decarboxylase inhibitor (S)-α-fluoromethylhistidine in rats. J. Pharm. Pharmacol., 42, 857–860 (1990)PubMedCrossRefGoogle Scholar
  66. Sakurai, T., Ojima, H., Yamasaki, T., Kojima, H. and Akashi, A.: Effects of N-(2,6-di- methylphenyl)-2-(2-oxo-1-pyrrolidinyl)acetamide (DM-9384) on learning and memory in rats. Japan. J. Pharmacol., 50, 47–53 (1989)CrossRefGoogle Scholar
  67. Schild, H.O.: pA, a new scale for the measurement of drug antagonism. Br. J. Pharmacol., 2, 189–206 (1947)Google Scholar
  68. Schwartz, J.C., Lampart, C. and Rose, C.: Histamine formation in rat brain in vivo: Effects of histidine loads. J. Neurochem., 19, 801–810 (1972)PubMedCrossRefGoogle Scholar
  69. Shibata, K., Hirano, Y., Fujino, A., Shimazu, M., Nagakawa, N., Inoue, K. and Uemura, I.: Metabolic fate of 14C-oxatomide in rats. Jpn. Pharmacol. Ther., 12, 3887–3903 (1984)Google Scholar
  70. Soda, Y., Mori, I., Yokoyama, N., Horisaka, K., Shichino, F., Shimada, A., Murai, K. and Ito, N.: Metabolic fate of mequitazine (LM-209) (1) Absorption, distribution and excretion of LM-209 in rats. Iyakuhin Kenkyu, 12, 462–480 (1981)Google Scholar
  71. Sunami, A. and Tasaka, K.: Two aspects of the excitatory influence of histamine on hippocampal neurons in guinea pigs. Meth. Find. Exp. Clin. Pharmacol., 13, 85–91 (1991)Google Scholar
  72. Tagami, H., Sunami, A., Akagi, M. and Tasaka, K.: Effect of histamine on the hippocampal neurons in guinea-pigs. Agents Actions, 14, 538–542 (1984)PubMedCrossRefGoogle Scholar
  73. Tanaka, S., Shirasaki, Y., Yamada, F., Endo, W. and Ashida, S.: Impairment effect of DM-9384, a new cognition enhancer, on learning deficits in cerebral embolized rats. Japan. J. Pharmacol., 52 (suppl), 74P (1990)Google Scholar
  74. Tasaka, K., Kamei, C., Akahori, H. and Kitazumi, K.: The effects of histamine and some related compounds on conditioned avoidance response in rats. Life Sci., 37, 2005–2014 (1985)PubMedCrossRefGoogle Scholar
  75. Tasaka, K., Kamei, C., Katayama, S., Kitazumi, K., Akahori, H. and Hokonohara, T.: Comparative study of various H1-blockers on neuropharmacological and behavioral effects including 1-(2-ethoxyethyl)-2-(4-methyl-l-homopiperazinyl)benzimidazole difumarate (KB- 2413), a new antiallergic agent. Arch. int. Pharmacodyn., 280, 275–291 (1986)PubMedGoogle Scholar
  76. Tasaka, K.: Anti-allergic drugs. Drugs of Today, 22, 101–133 (1986)Google Scholar
  77. Tasaka, K., Kamei, C., Chung, Y.H. and Nakano, S.: Pharmacological effects of oxitropium bromide on the central nervous system. Pharmacometrics, 36, 425–432 (1988)Google Scholar
  78. Tasaka, K., Chung, Y.H., Sawada, K. and Mio, M.: Excitatory effect of histamine on the arousal system and its inhibition by H1 blockers. Brain Res. Bull., 22, 271–275 (1989a)PubMedCrossRefGoogle Scholar
  79. Tasaka, K., Kamei, C., Nakano, S., Tsujimoto, S. and Chung, Y.H.: Effect of epinastine, a new antiallergic agent, on the central nervous system. Pharmacometrics, 38, 53–62 (1989b)Google Scholar
  80. Tasaka, K., Kamei, C., Tsujimoto, S., Yoshida, T. and Aoki, I.: Central effect of the potent long-acting H1-antihistamine levocabastine. Arzneim.-Forsch., 40, 1295–1299 (1990)Google Scholar
  81. Tatsumi, K., Ou, T., Yamada, H. and Yoshimura, H.: Studies on metabolic fate of a new antiallergic agent, azelastine (4-(p-chlorobenzyl)-2- [N-methylperhydroazepinyl-(4)] -1- (2H)-phthalazinone hydrochloride). Japan. J. Pharmacol., 30, 37–48 (1980)Google Scholar
  82. Uzan, A., Le Fur, G. and Malgouris, C.: Are antihistamines sedative via a blockade of brain H1 receptors? J. Pharm. Pharmacol., 31, 701–702 (1979)PubMedCrossRefGoogle Scholar
  83. Van den Brink, F.G. and Lien, E.J.: Competitive and noncompetitive antagonism. In: Rocha e Silva, M. (ed) Histamine II and Anti-Histaminics, Springer-Verlag, Berlin, pp. 333–367, 1978Google Scholar
  84. Wallace, J.E., Krauter, E.E. and Campbell, B.A.: Motor and reflexive behavior in the aging rat. J. Gerontol., 35, 364–370 (1980)PubMedGoogle Scholar
  85. Wauquier, A., Van den Broeck, W.A.E., Awouters, F. and Janssen, P.A.J.: A comparison between astemizole and other antihistamines on sleep-wakefulness cycles in dogs. Neuropharmacology, 20, 853–859 (1981)PubMedCrossRefGoogle Scholar
  86. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M. R.: Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science, 215, 1237–1239 (1982)PubMedCrossRefGoogle Scholar
  87. Winter, C.A. and Flataker, L.: The effect of antihistaminic drugs upon the performance of trained rats. J. Pharmacol. Exp. Ther., 101, 156–162 (1951)PubMedGoogle Scholar
  88. Wyngaarden, J.B. and Seevers, M.H.: The toxic effects of antihistaminic drugs. J. Amer. Med. Ass., 145, 277–282 (1951)CrossRefGoogle Scholar
  89. Yamatodani, A. and Watanabe, T.: Studies with α-fluoromethylhistidine as a probe. In: Watanabe, T. and Wada, H. (ed) Histaminergic Neurons: Morphology and Function. CRC Press, Boca Raton, pp. 231–240, 1991Google Scholar
  90. Yamamoto, M., Shimizu, M., Sakamoto, N., Ohtomo, H. and Kogure, K.: Protective effects of indeloxazine hydrochloride on cerebral ischemia in animals. Arch. int. Pharmacodyn., 290, 16–24 (1987)PubMedGoogle Scholar
  91. Yamamoto, M. and Shimizu, M.: Cerebral activating properties of indeloxazine hydrochloride. Neuropharmacology, 26, 761–770 (1987)PubMedCrossRefGoogle Scholar
  92. Yamazaki, N., Take, Y., Nagaoka, A. and Nagawa, Y.: Beneficial effect of idebenone (CV-2619) on cerebral ischemia-induced amnesia in rats. Japan. J. Pharmacol., 36, 349–356 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1994

Authors and Affiliations

  • Kenji Tasaka
    • 1
  1. 1.The Department of Pharmacology in the Faculty of Pharmaceutical SciencesOkayama UniversityOkayamaJapan

Personalised recommendations