Skip to main content

Heart Contraction and Coronary Blood Flow

  • Chapter
Recent Advances in Coronary Circulation

Summary

Heart contraction is the cause of pulsatile coronary arterial and venous flow. It also reduces time-averaged flow through the myocardium, also referred to as myocardial perfusion. The impediment of myocardial perfusion is predominantly subendocardial, which for a long time resulted in the paradigm that this impediment was caused by a tissue pressure coupled to left ventricular pressure. However, it has recently been shown that heart muscle contraction directly affects coronary blood flow. A unique concept of contraction-perfusion interaction is lacking. Both contractility and left ventricular pressure do affect coronary perfusion, but are mutually dependent. An important determinant for the contraction-perfusion interaction appears to be the filling of the intramyocardial vasculature and the structure of the connections between vessel walls and myocytes. Different aspects of the contraction-perfusion interaction are considered, including the effect of contraction on lymph pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scaramucci J (1695) De motu cordis, theorema sextum. In: Theoremata familiaria de physico-medicis lucubrationsibus lucta leges mecanicas (in Latin) pp 70–81

    Google Scholar 

  2. Porter WT (1898) The influence of the heartbeat on the flow of blood through the walls of the heart. Am J Physiol 1:145–163

    Google Scholar 

  3. Gregg DE, Greem HD (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am J Physiol 130:114–125

    Google Scholar 

  4. Sabiston DC Jr, Gregg DE (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15:14–20

    PubMed  Google Scholar 

  5. Wiggers CJ (1954) The interplay of coronary vascular resistance and myocardial compression in regulating coronary flow. Circ Res 2:271–279

    PubMed  CAS  Google Scholar 

  6. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760

    PubMed  CAS  Google Scholar 

  7. Hoffman JIE, Spaan JAE (1990) Pressure-flow relations in the coronary circulation. Physiol Rev 70:331–390

    PubMed  CAS  Google Scholar 

  8. Spaan JAE, Breuls NPW, Laird JD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49:582–593

    Google Scholar 

  9. Spaan JAE, Breuls NPW, Laird JD (1981) Forward coronary flow normally seen in systole is the result of both forward and concealed back flow. Basic Res Cardiol 76:582–586

    Article  PubMed  CAS  Google Scholar 

  10. Spaan JAE (1985) Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 56:293–309

    PubMed  CAS  Google Scholar 

  11. Vergroesen I, Noble MIM, Spaan JAE (1987) Intramyocardial blood volume change in first moments of cardiac arrest in anesthetized goats. Am J Physiol 253 (Heart Circ Physiol 22):H307-H316

    PubMed  CAS  Google Scholar 

  12. Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Fed Proc 40: 2037–2041

    PubMed  CAS  Google Scholar 

  13. Bruinsma P, Arts T, Dankelman J, Spaan JAE (1988) Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 83:510–524

    Article  PubMed  CAS  Google Scholar 

  14. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI (1990) Phasic regional myocardial inflow and outflow: Comparison of theory and experiments. Am J Physiol 258 (Heart Circ Physiol 27):H1687-H1698

    PubMed  CAS  Google Scholar 

  15. Krams R, Sipkema P, Westerhof N (1989) Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257 (Heart Circ Physiol 26): H1471-H1479

    PubMed  CAS  Google Scholar 

  16. VanWinkle DM, Swafford AN, Downey JM (1991) Subendocardial coronary compression in beating dog hearts is independent of pressure in the ventricular lumen. Am J Physiol 261 (Heart Circ Physiol 30):H500-H505

    CAS  Google Scholar 

  17. Westerhof N (1990) Physiological hypotheses: Intramyocardial pressure. A new concept, suggestions for measurement. Basic Res Cardiol 85:105–119

    Article  PubMed  CAS  Google Scholar 

  18. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  CAS  Google Scholar 

  19. Krams R, Sipkema P, Westerhof N (1990) Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 258 (Heart Circ Physiol 27):H1889-H1898

    PubMed  CAS  Google Scholar 

  20. Krams R, Sipkema P, Zegers J, Westerhof N (1989) Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 257 (Heart Circ Physiol 26):H1936-H1944

    PubMed  CAS  Google Scholar 

  21. Chilian WM, Marcus ML (1982) Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ Res 50:775–781

    PubMed  CAS  Google Scholar 

  22. Chilian WM, Marcus ML (1985) Effects of coronary and extravascular pressure on intramyocardial and epicardial blood velocity. Am J Physiol 248 (Heart Circ Physiol 17):H170-H178

    PubMed  CAS  Google Scholar 

  23. Kouwenhoven E, Vergroesen I, Han Y, Spaan JAE (1992) Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 263 (Heart Circ Physiol 32): H484-H490

    PubMed  CAS  Google Scholar 

  24. Han Y, Vergroesen I, Spaan JAE (1993) Stopped-flow epicardial lymph pressure is affected by left ventricular pressure in anesthetized goats. Am J Physiol 264 (Heart Circ Physiol 33):H1624-H1628

    PubMed  CAS  Google Scholar 

  25. Han Y, Vergroesen I, Goto M, Dankelman J, VanderPloeg CPB, Spaan JAE (1993) Left ventricular pressure transmission to myocardial lymph vessels is different during systole and diastole. Pflügers Arch 423:448–454

    Article  PubMed  CAS  Google Scholar 

  26. VanderPloeg CPB, Dankelman J, Spaan JAE (1993) Functional distribution of coronary vascular volume in the beating goat heart. Am J Physiol 264 (Heart Circ Physiol 33):H770-H776

    CAS  Google Scholar 

  27. Goto M, Flynn AE, Doucette JW, Jansen CMA, Stork MM, Coggins DL, Muehrcke DD, Husseini WK, Hoffman JIE (1991) Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol 261 (Heart Circ Physiol 30) :H1417-H1429

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Spaan, J.A.E. (1993). Heart Contraction and Coronary Blood Flow. In: Maruyama, Y., Kajiya, F., Hoffman, J.I.E., Spaan, J.A.E. (eds) Recent Advances in Coronary Circulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68249-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68249-3_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68251-6

  • Online ISBN: 978-4-431-68249-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics