Skip to main content

Beneficial Role of Alpha-Adrenoceptor Activity in Myocardial Ischemic and Reperfusion Injury

  • Chapter
Recent Advances in Coronary Circulation

Summary

The role played by alpha-adrenoceptor activity in the heart has not yet been extensively investigated. Several lines of evidence, however, support the idea that this activity is closely related to the pathogenesis of ischemic and reperfusion injury. The major effect of alpha-adrenoceptor stimulation in the coronary arteries is vasoconstriction, which may restrict myocardial oxygen supply. Alpha-adrenoceptor stimulation also increases myocardial contractility without marked increases in intracellular Ca2+, which effect may increase myocardial oxygen demand. Thus, it would seem that alpha-adrenoceptor stimulation exacerbates myocardial ischemia by increasing the imbalance between myocardial oxygen demand and supply. Indeed, electrical sympathetic nerve stimulation is reported to have a deleterious effect on myocardial and coronary function. Sympathetic nerve activation during ischemia, however, may not be as potent as electrical sympathetic nerve stimulation, and mild sympathetic nerve stimulation may be beneficial for ischemia and reperfusion injury. Indeed, alpha1-adrenoceptor stimulation maintains endocardial coronary flow at the expense of epicardial flow, and this stimulation enhances the release of adenosine, while alpha2-adrenoceptor stimulation increases the release of endothelial-dependent relaxing factor (EDRF) and histamine, and increases the sensitivity of adenosine receptors to adenosine, all of which actions may attenuate ischemic injury. Since alpha1-adrenoceptor activation enhances adenosine release (through the activation of 5’-nucleotidase); stimulation of alpha1-adrenoceptors during ischemia and reperfusion produces beneficial effects on reperfusion injury via this enhanced release of adenosine. Further basic studies are necessary to gain a better understanding of the role played by alpha-adrenoceptor activity in the pathogenesis of ischemia and reperfusion injury, and further clinical studies are needed to extend these observations to human ischemic hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wollenberger A, Shaab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207:88–89

    Article  PubMed  CAS  Google Scholar 

  2. Muntz KH, Hapler HK, Boulas JH, Willerson JT, Buja ML (1984) Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Physiol 114:64–78

    CAS  Google Scholar 

  3. Schomig A, Dart AM, Dietz R, Mayer E, Kubier W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701

    PubMed  CAS  Google Scholar 

  4. Dart AM, Schomig A, Dietz R, Mayer E, Kubier W (1984) Release of endogenous catecholamine in the ischemic myocardium of the rat. Part B: Effects of sympathetic nerve stimulation. Circ Res 55:702–706

    PubMed  CAS  Google Scholar 

  5. Zuberbuhler RC, Bohr DF (1965) Responses of coronary smooth muscle to catecholamine. Circ Res 16:431–440

    PubMed  CAS  Google Scholar 

  6. Murray PA, Vatner SF (1979) Alpha-adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654–660

    PubMed  CAS  Google Scholar 

  7. Vatner SF (1983) Alpha-adrenergic regulation of the coronary circulation in the conscious dog. Am J Cardiol 52:15A-21A

    Article  PubMed  CAS  Google Scholar 

  8. Angus JA, Cocks TM, Satoh K (1986) The a-adrenoceptors on endothelial cells (Brief review). Fed Proc 45:2355–2359

    PubMed  CAS  Google Scholar 

  9. Camazine B, Shannon RP, Guerrero JL, Graham RM, Powell WJ Jr (1988) Neurogenic histaminergic vasodilation in canine skeletal muscle: Mediation by alpha2-adrenoceptor stimulation. Circ Res 62:871–883

    PubMed  CAS  Google Scholar 

  10. Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T (1987) Alpahi-adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 60:631–639

    PubMed  CAS  Google Scholar 

  11. Hori M, Kitakaze M, Tamai J, Koretsune Y, Iwai K, Iwakura K, Kagiya T, Kitabatake A, Inoue M, and Kamada T (1988) Alpha2-adrenoceptor activity exerts dual control of coronary blood flow in canine coronary artery. Am J Physiol 255:H250-H260

    PubMed  CAS  Google Scholar 

  12. Hori M, Kitakaze M, Tamai J, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) Alpha2-adrenoceptor stimulation can augment coronary vasodilation maximally induced by adenosine in dogs. Am J Physiol 257:H132-H140

    PubMed  CAS  Google Scholar 

  13. Kitakaze M, Hori M, Gotoh K, Sato H, Iwakura K, Kitabatake A, Inoue M, Kamada T (1989) Beneficial effects of alpha2-activity on ischemic myocardium during coronary hypoperfusion in dogs. Circ Res 65:1632–1645

    PubMed  CAS  Google Scholar 

  14. Schomig A, Fischer S, Kurz T, Richardt G, Schomig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: Mechanism and metabolic requirements. Circ Res 60:194–205

    PubMed  CAS  Google Scholar 

  15. Corr PB, Gillis RA (1978) Autonomic neural influences on the dysarrhythmia resulting from myocardial infarction. Circ Res 43:1–9

    PubMed  CAS  Google Scholar 

  16. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Eur Heart J 5:960–973

    PubMed  CAS  Google Scholar 

  17. Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306

    Article  PubMed  CAS  Google Scholar 

  18. Gauduel Y, Karagueuzian HS, Leiris JD (1979) Deleterious effects of endogenous catecholamines on hypoxic myocardial cells following reoxygenation. J Mol Cell Cardiol 11:717–731

    Article  PubMed  CAS  Google Scholar 

  19. Shaab L, Wollenberger A, Haase M, Schiller U (1969) Noradrenalinaggabe aus dem Hundeherzen nach vorubergehender Okklusion einer Koronararterie. Acta Biol Med Gem 22:135–143

    Google Scholar 

  20. Schomig A, Kurz T, Richardt G, Schomig E (1988) Neuronal sodium homeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circ Res 63:214–226

    PubMed  CAS  Google Scholar 

  21. Homey CJ, Graham RM (1985) Molecular characterization of adrenergic receptors. Circ Res 56:635–650

    Google Scholar 

  22. Endo T, Naka M, Hidaka H (1982) Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin. Biochem Biophys Res Comm 105:942–948

    Article  PubMed  CAS  Google Scholar 

  23. Nishikawa. M, Hidaka H, Adelstein RS (1983) Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase C. The effect on actin-activated MgATPase activity. J Biol Chem 258:14069–14072

    PubMed  CAS  Google Scholar 

  24. Nishikawa M, Sellers JR, Adelstein RS, Hidaka H (1984) Protein kinase C modulates in vitro phosphorylation of smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem 259:8808–8814

    PubMed  CAS  Google Scholar 

  25. Connolly TN, Limberd LE (1983) The influence of Na+ on the alpha2 adrenergic receptor system of human platelets. A method for removal of extraplatelet Na+: Effect of Na+ removal on aggregation, secretion, and cAMP accumulation. J Biol Chem 258:3907–3912

    PubMed  CAS  Google Scholar 

  26. Kelley KO, Feigl EO (1978) Segmental alpha-receptor-mediated vasoconstriction in the canine coronary circulation. Circ Res 43:908–917

    PubMed  CAS  Google Scholar 

  27. Chilian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous micro- vascular coronary alpha-adrenergic vasoconstriction. Circ Res 64:376–388

    PubMed  CAS  Google Scholar 

  28. Heusch G, Deussen A, Schipke J, Thamer V (1984) α1 and (X2-Adren0cept0r- mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6:961–968

    Article  PubMed  CAS  Google Scholar 

  29. Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250:H645-H653

    PubMed  CAS  Google Scholar 

  30. Buffington CW, Feigl EO (1983) Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog. Circ Res 53:613–621

    PubMed  CAS  Google Scholar 

  31. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  32. Horeyseck G, Janig W, Kirchner F, Thamer V (1976) Activation and inhibition of muscle and cutaneous postganglionic neurons to hind-limb during hypothalamically- induced vasoconstriction and atropine-sensitive vasodilation. Pflügers Arch 361: 231–240

    Article  PubMed  CAS  Google Scholar 

  33. Hori M, Tamai J, Kitakaze M, Iwakura K, Gotoh K, Iwai K, Koretsune Y, Kagiya T, Kitabatake A, Kamada T (1989) Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs. Am J Physiol 257:H244-H251

    PubMed  CAS  Google Scholar 

  34. DeWitt DF, Wangler RD, Thompson Cl, Sparks HV Jr (1983) Phasic release of adenosine during steady state metabolic stimulation in the isolated guinea pig heart. Circ Res 53:636–643

    PubMed  CAS  Google Scholar 

  35. Kitakaze M, Hori M, Iwakura K, Sato H, Gotoh K, Tada M (1989) Protein kinase C regulates production of adenosine in hypoxic myocytes of rats (abstract). Circulation 80:11–498

    Google Scholar 

  36. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    PubMed  CAS  Google Scholar 

  37. Nayler WG, Price JM, Lowe TE (1967) Inhibition of adenosine-induced coronary vasodilation. Cardiovasc Res 1:63–66

    Article  PubMed  CAS  Google Scholar 

  38. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15

    PubMed  CAS  Google Scholar 

  39. Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross J Jr (1988) Intracoronary α2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62:436–442

    PubMed  CAS  Google Scholar 

  40. Agarwal KC (1987) Adenosine and platelet function. In: Stefanovich V, Okayuz- Baklouti L (eds) Adenosine in cerebral metabolism and blood flow VNU Science Press, The Netherlands pp 107–124

    Google Scholar 

  41. Agarwal KC, Zielinski BA, Maitra RS (1989) Significance of plasma adenosine in the antiplatelet activity of forskolin: Potentiation by dipyridamole and dilazep. Thromb Haemost 61:106–110

    PubMed  CAS  Google Scholar 

  42. Nayler WG, Gordon M, Stephens DJ, Sturrdock JW (1985) The protective effect of prazosin on the ischemic and reperfused myocardium. J Mol Cell Cardiol 17:85–699

    Google Scholar 

  43. Herrmann SC, Feigl EO (1992) Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. Circ Res 70:1203–1216

    PubMed  CAS  Google Scholar 

  44. Braunwald E, Kloner RA (1982) The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 60:1146–1149

    Article  Google Scholar 

  45. Kitakaze M, Hori M, Sato H, Iwakura K, Gotoh K, Inoue M, Kitabatake A, Kamada T (1991) Beneficial effects of α1-adrenoceptor activity on myocardial stunning in dogs. Circ Res 68:1322–1339

    PubMed  CAS  Google Scholar 

  46. Kitakaze M, Takashima S, Sato H (1990) Stimulation of adenosine A1 and A2 receptors prevents myocardial stunning (abstract). Circulation 82[Suppl III]:III-37

    Google Scholar 

  47. Brodeur RD, Storey C, Anderson PR, Cabrera BDF, Nunnally RL (1990) Effects of adenosine on functional recovery during reperfusion of the ischemic rabbit myocardium. Circulation 82[Suppl III]:III-289

    Google Scholar 

  48. Taegtmeyer H, Roberts AFC, Raine AEG (1985) Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 6:864–870

    Article  PubMed  CAS  Google Scholar 

  49. Ambrosio G, Jacobus WE, Becker LC (1986) Effect of ATP precursor administration on post-ischemic function and metabolism in isolated rabbit hearts (abstract). J Am Coll Cardiol 7:79A

    Google Scholar 

  50. Nunnally RL, Hollis DP (1979) Adenosine triphosphate compartmentation in living hearts: A phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry 18:3642–3646

    Article  PubMed  CAS  Google Scholar 

  51. Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart: A 31P-NMR magnetization transfer study. J Biol Chem 260:3512–3517

    PubMed  CAS  Google Scholar 

  52. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987) Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961

    Article  PubMed  CAS  Google Scholar 

  53. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707

    PubMed  CAS  Google Scholar 

  54. Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695

    Article  PubMed  CAS  Google Scholar 

  55. Kitakaze M, Weisfeldt ML, Marban E (1988) Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82:920–927

    Article  PubMed  CAS  Google Scholar 

  56. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM (1990) Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied for the study of ischemia and reperfusion. Circ Res 66:1255–1267

    PubMed  CAS  Google Scholar 

  57. Isenberg G, Cerbai E, Klockner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg New York London Tokyo, pp 323–335

    Google Scholar 

  58. Cerbai E, Klockner U, Isenberg G (1988) Ca-antagonistic effects of adenosine in guinea pig atrial cells. Am J Physiol 255:H872-H878

    PubMed  CAS  Google Scholar 

  59. Endo M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contraction of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α1– and α2-adrenoceptors. Circ Res 62:247–265

    Google Scholar 

  60. Sharma AD, Saffitz JE, Lee BI, Soble BE, Corr PB (1983) Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. J Clin Invest 72:802–818

    Article  PubMed  CAS  Google Scholar 

  61. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1986) Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177

    Article  Google Scholar 

  62. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: An endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest 78:760–770

    Article  PubMed  CAS  Google Scholar 

  63. Cronstein BN (1990) Adenosine is an endogenous modulator of inflammation (abstract). Jpn J Pharmacol 52[Suppl II]:57

    Google Scholar 

  64. Kitakaze M, Hori M, Sato H, Iwakura K, Takashima S, Komamura K, Kitabatake A, Inoue M, Kamada T (1990) Endogenous adenosine inhibits formation of microthromboembolism in ischemic myocardium (abstract). Jpn Circ J 54:922–923

    Google Scholar 

  65. Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R (1987) Reduction of reperfusion injury in a canine preparation by intracoronary adenosine: Importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145

    Article  PubMed  CAS  Google Scholar 

  66. Engler R (1987) Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia. Fed Proc 46:2407–2412

    PubMed  CAS  Google Scholar 

  67. Stahl LD, Weiss HR, Becker LC (1988) Myocardial oxygen consumption, oxygen supply/demand heterogeneity, and microvascular patency in regionally-stunned myocardium. Circulation 77:865–872

    Article  PubMed  CAS  Google Scholar 

  68. Hori M, Inoue M, Kitakaze M, Koretsune Y, Iwai K, Tamai J, Ito H, Kitabatake A, Sato T, Kamada T (1986) Role of adenosine in hyperemic response of coronary blood flow in microembolization. Am J Physiol 250:H509-H518

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Hori, M., Kitakaze, M., Takashima, S., Sato, H., Inoue, M., Kamada, T. (1993). Beneficial Role of Alpha-Adrenoceptor Activity in Myocardial Ischemic and Reperfusion Injury. In: Maruyama, Y., Kajiya, F., Hoffman, J.I.E., Spaan, J.A.E. (eds) Recent Advances in Coronary Circulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68249-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68249-3_27

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68251-6

  • Online ISBN: 978-4-431-68249-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics