Skip to main content

Concepts and Controversies in Modelling the Coronary Circulation

  • Chapter
Recent Advances in Coronary Circulation

Summary

Some major concepts and controversies associated with coronary flow dynamics and the interaction between left ventricular myocardial contraction and the coronary vasculature are highlighted. The controversies rise from the interpretations of the forces acting on the intramyocardial vessels and the mechanisms postulated to affect the coronary circulation. These include the waterfall concept and the pressure-dependent resistance and compliance models which are, in essence, refinements of the intramyocardial pump concept. These are reviewed in the light of recent models of the coronary circulation. Coronary ischemia, which is typically associated with the development of collateral flow, is also presented. In addition, the important role of the collagen mesh in the generation of intramyocardial pressure (IMP) at a wide range of loading conditions and the contribution of myocardial fluid transport to IMP distribution and the coronary vasculature are included in a comprehensive model relating the interactions of the above factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kouwenhoven E, Vergrossen I, Han Y, Spaan JAE (1992) Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 263 (Heart and Circ Physiol 32):H484-H490

    PubMed  CAS  Google Scholar 

  2. Hoffman JIE, Spaan JAE (1990) Pressure flow relation in the coronary circulation. Physiol Rev 70:331–390

    PubMed  CAS  Google Scholar 

  3. Beyar R, Sideman S (1984) A computer study of left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ Res 55:358–375

    PubMed  CAS  Google Scholar 

  4. Beyar R, Sideman S (1987) Time-dependent coronary blood flow distribution in the left ventricular wall. Am J Physiol 252 (Heart Circ Physiol 21):H417-H433

    PubMed  CAS  Google Scholar 

  5. Bruinsma P, Arts T, Dankelman J, Spaan JAE (1988) Model of the coronary circulation based on pressure dependence of the coronary resistance and compliance. Basic Res Cardiol 83:510–524

    Article  PubMed  CAS  Google Scholar 

  6. Downey JM, Kirk ES (1985) Inhibition of coronary blood flow by vascular waterfall mechanism. Circ Res 36:753–760

    Google Scholar 

  7. Stein PD, Marzilli M, Sabbah HN, Tennyson L (1980) Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol 238 (Heart Circ Physiol 7):H625-H630

    PubMed  CAS  Google Scholar 

  8. Kresh JY, Fox M, Brockman SK, Noordergraaf (1990) A Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol 258:H262-H276

    PubMed  CAS  Google Scholar 

  9. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249:H1216-H1223

    PubMed  CAS  Google Scholar 

  10. Feit TS (1979) Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J 28:143–166

    Article  PubMed  CAS  Google Scholar 

  11. Arts T, Reneman TS, Veenstra PC (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7:299–318

    Article  PubMed  CAS  Google Scholar 

  12. Baird RJ, Goldbach MM, De La Rocha (1970) Intramyocardial pressure: The persistence of its transmural gradients in the empty heart and its relationship to myocardial oxygen consumption. J Thorac Cardiovasc Surg 59:810–823

    PubMed  CAS  Google Scholar 

  13. Krams K, Sipkema P, Zegers J, Westerhof N (1989) Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 257 (Heart Circ Physiol 26):H1936-H1944

    PubMed  CAS  Google Scholar 

  14. Krams K, Sipkema P, Westerhof N (1989) Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure. Am J Physiol 258 (Heart Circ Physiol 27):H1936-H1944

    Google Scholar 

  15. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI (1988) A theoretical model for myocardial blood flow. In: Brun P, Chadwick RS, Levy BI (eds) Cardiovascular dynamics and models, Proceedings of NIH-INSERM Workshops, vol 183. Paris, INSERM, pp 77–90

    Google Scholar 

  16. Nevo E, Lanir Y (1989) Structural finite deformation model of the left ventricle during diastole and systole. Trans Am Soc Mech Eng 111:342–349

    CAS  Google Scholar 

  17. Beyar R, Kamminker R, Manor D, Ben Ari R, Sideman S (1991) On the mechanism of transmural myocardial compression and perfusion. In: Sideman S, Beyar R, Kléber A (eds) Cardiac electrophysiology, circulation and transport. Kluwer, Boston, pp 245–258

    Chapter  Google Scholar 

  18. Caulfield JB, Borg TK (1979) The collagen network of the heart. J Lab Invest 40:364–372

    CAS  Google Scholar 

  19. Beyar R, Guerci A, Halperin H, Tsitlik J, Weisfeldt M (1989) Intermittent coronary sinus occlusion following coronary arterial ligation results in venous retroperfusion. Circ Res 65:695–707

    PubMed  CAS  Google Scholar 

  20. Bellamy RF (1978) Diastolic coronary pressure flow relationship in the dog. Circ Res 43:92–101

    PubMed  CAS  Google Scholar 

  21. Klocke FJ, Mates RE, Canty JM, Ellis AK (1985) Coronary pressure flow relationships: Controversial issues and probable implications. Circ Res 56:310–323

    PubMed  CAS  Google Scholar 

  22. Uhlig PN, Baer RW, Vlahakes GJ, Hanley FL, Messina LM, Hoffman JIE (1984) Arterial and venous pressure flow relations in anesthetized dogs. Evidence for a vascular waterfall in epicardial coronary veins. Circ Res 55:238–248

    PubMed  CAS  Google Scholar 

  23. Spaan JAE, Breuls NPW, Laird JD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49: 584–593

    PubMed  CAS  Google Scholar 

  24. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy BI (1990) Phasic regional myocardial inflow and outflow: Comparison of theory and experiments. Am J Physiol 258:H1687-H1698

    PubMed  CAS  Google Scholar 

  25. Beyar R, Caminker R, Manor D, Sideman S (1993) Coronary flow patterns in normal and ischemic hearts: Transmyocardial and artery to vein distribution. Ann Biomed Eng (in press)

    Google Scholar 

  26. Lee J, Chambers D, Akizuki S, Downey J (1984) The role of vascular capacitance in the coronary arteries. Circ Res 55:751–762

    PubMed  CAS  Google Scholar 

  27. Kajiya F, Goto M, Yada T, Ogasawara Y, Kimura A, Hiramasatu O, Tsujioka K (1992) How does myocardial contraction affect intramyocardial microcirculation (abstract)2. Heart and Vessels [Suppl 8]: 129

    Google Scholar 

  28. Armour JA, Klassen GA (1983) Pressures and flows in the epicardial coronary veins of the dog heart: Responses to positive inotropism. Can J Physiol Pharmacol 62:38–48

    Article  Google Scholar 

  29. Gould KL (1985) Quantification of coronary artery stenosis in vivo. Circ Res 57: 341–353

    PubMed  CAS  Google Scholar 

  30. Scheel KW, Mass H, Williams SE (1989) Collateral influence on pressure-flow characteristics of coronary circulation. Am J Physiol 257 (Heart Circ Physiol 26): H717-H725

    PubMed  CAS  Google Scholar 

  31. Manor D, Beyar R, Sideman S (1991) On the pressure-flow relationship of the coronary collaterals: A model study. In: Proceedings of Computers in Cardiology, 23–26 Sept 1991, Venice, Italy. IEEE Computer Society Press, California, pp 713–716

    Google Scholar 

  32. Yoshida S, Akizuki S, Gowski D, Downey JM (1985) Discrepancy between microspheres and diffusible tracer estimates of perfusion to ischemic myocardium. Am J Physiol 248 (Heart Circ Physiol 17):H255-H264

    Google Scholar 

  33. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  CAS  Google Scholar 

  34. Doucette JW, Goto M, Flynn AE, Husseini WK, Hoffman JIE (1990) Effect of left ventricular pressure and myocardial contraction on coronary flow (abstract). Circulation 82 [Suppl III]:379

    Google Scholar 

  35. Kresh JY (1989) Myocardial modulation of coronary circulation (letter). Am J Physiol 26:H1934-H1935

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Beyar, R., Manor, D., Zinemanas, D., Sideman, S. (1993). Concepts and Controversies in Modelling the Coronary Circulation. In: Maruyama, Y., Kajiya, F., Hoffman, J.I.E., Spaan, J.A.E. (eds) Recent Advances in Coronary Circulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68249-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68249-3_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68251-6

  • Online ISBN: 978-4-431-68249-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics