Advertisement

Shock Wave Interaction in Solid Materials

  • K. Nagayama

Abstract

Most of the experimental studies on shock wave propagation in condensed media has been directed toward the study of material science by using the extreme conditions realized by shock compression [1–3]. In this sense, the shock wave is regarded as a useful tool of studying materials. Unlike gases or liquids, solid materials have a wide variety of properties, which is usually hard to discuss in a universal manner. The so-called law of corresponding states known for gas and liquid systems does not apply to solids at least in the same sense. One of the exceptional example of universalities in solid materials is the empirical Hugoniot relationship between shock velocity and particle velocity [4]. This fact seems rather curious, considering the wide variety of materials measured. At least within author’s knowledge, the deep physical meaning of this universal law is still unknown. This law naturally comes from the form of equation of state, or from that of constitutive relations for the materials. It also includes much ambiguities, and is one of the major objectives of shock compression experiments.

Keywords

Shock Wave Incident Shock Shock Velocity Mach Stem Mach Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McQueen RG, Marsh SP, Taylor JW, Fritz JM and Carter WJ (1970) High Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York.Google Scholar
  2. 2.
    Murri WJ, Curran DR, Peterson CF and Crewdson RC (1974) Advances in High-Pressure Research Vol. 4, ed. R.H. Wentorf, Jr, Academic Press, London and New York, p.l.Google Scholar
  3. 3.
    Shock Compression of Condensed Matter (1990), Proc. APS Top. Conf. Albuquerque, 1989, ed. S.C. Schmidt, J.N. Johnson and L.W. Davison, North-Holland Publ. Co., Amsterdam.Google Scholar
  4. 4.
    Rodean HC (1977) J. Appl. Phys., 48, 2384.ADSCrossRefGoogle Scholar
  5. 5.
    Prummer R (1987) Explosiveverdichtung Pulveriger Substanzen, Springer-Verlag, Berlin.Google Scholar
  6. 6.
    Meyers MA and Pak HR (1985) J. Mater. Sci., 20, 2133.Google Scholar
  7. 7.
    Mader CL (1966) Los Alamos Scientific Laboratory Report No. LA-3578.Google Scholar
  8. 8.
    Reaugh JE (1987) J. Appl. Phys., 61, 962.ADSCrossRefGoogle Scholar
  9. 9.
    Keeler RN and Royce EB (1971) Physics of High Energy Density, ed. P. Cardirola and H. Knoepfei, Academic Press, New York and London.Google Scholar
  10. 10.
    Nagayama K (1981) Appl. Phys. Lett., 38, 109.ADSCrossRefGoogle Scholar
  11. 11.
    Al'tshider LV, Kormer SB, Bakanova AA, Petrunin AP, Funtikov AI and Gubkin AA (1962) J.E.T.P. (English Translation), 14,986.Google Scholar
  12. 12.
    Krehl P, Hornemann U and Heilig W (1977) Proc. 11th Int. Symp. Shock Tubes & Waves, ed. B. Ahlborn, A. Hertzberg and D. Russel, Univ. Washington Press, Seattle, 1977.Google Scholar
  13. 13.
    Syono Y, Goto T and Sato T (1982) J. Appl. Phys., 53,7131.ADSCrossRefGoogle Scholar
  14. 14.
    Neal T (1975) J. Appl. Phys., 46,2521.ADSCrossRefGoogle Scholar
  15. 15.
    Ben-Dor G (1992) Shock Wave Reflection Phenomena, Springer-Verlag, New York.MATHGoogle Scholar
  16. 16.
    Collier RJ, Burckhardt CB and Lin LH (1971) Optical Holography, Chap.l 1, Academic Press, New York and London.Google Scholar
  17. 17.
    Nagayama K and Mori Y (1992) submitted to Proc. 20th Int Cong. High-Speed Photo. Photonics, 21–25 Victoria, Canada 1992.Google Scholar
  18. 18.
    Dubovik AS (1968) Photographic Recording of High-speed Processes, [English Translation], Pergamon Press, Oxford.Google Scholar
  19. 19.
    Schäfer FP (1989) Dye Lasers - Topics in Applied Physics Vol 1, ed. F. P. Schäfer, Chap. 1, Springer-Verlag, Berlin.Google Scholar
  20. 20.
    Mori Y and Nagayama K (1992) submitted to Proc. 20th Int Cong. High-Speed Photo. Photonics, 21–25 Victoria, Canada 1992.Google Scholar
  21. 21.
    Nagayama K and Murakami T (1976) J. Phys. Soc. Japan 41, 359.ADSCrossRefGoogle Scholar
  22. 22.
    Nagayama K (1992) submitted to J. Phys. Soc. Japan.Google Scholar
  23. 23.
    Nagayama K, Oka T and Mashimo T (1982) J. Appl. Phys. 53, 3029.Google Scholar
  24. 24.
    Nagayama K and Mashimo T (1982) in: High Field Magnetism, Proc. Int. Symp. High Field Magnetism, Osaka, Japan (North Holland, Amsterdam, 1983)Google Scholar
  25. 25.
    Nagayama K and Mashimo T (1984) in: Proc. 3rd Int. Conf Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, USSR (Nauka, Moscow, 1985)Google Scholar
  26. 26.
    Bichenkov EI, Gilev SD and Trubachev AM (1980) Zh. Prikl. Mekh. Tech. Fiz. 5,125.Google Scholar
  27. 27.
    Gilev SD and Trubachev AM (1982) Picima b JTF, 8,914.Google Scholar
  28. 28.
    Bichenkov EI, Gilev SD and Trubachev AM (1984) in: Proc. 3rd Int. Conf Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, USSR (Nauka, Moscow, 1985)Google Scholar
  29. 29.
    Hawke RS, Duerre DE, Heubell JG, Keeler RN and Klapper H (1972) Phys. Earth Planet. Inter., 6,44.Google Scholar
  30. 30.
    Fowler CM, Garn WB and Caird RS (1960) J. Appl. Phys., 31, 588.Google Scholar
  31. 31.
    Somon JP (1969) J. Fluid Mech., 38,769.ADSMATHCrossRefGoogle Scholar
  32. 32.
    Nellis WJ, Ree FH, Trainor RJ, Mitchell AC and Boslough MB (1984) J. Chem. Phys. 80,2789.Google Scholar
  33. 33.
    LASL Shock Hugoniot Data, ed. by S.P. Marsh, Univ. Calif., Berkeley (Berkeley, Los Angels, London, 1980).Google Scholar
  34. 34.
    Barker LM and Hollenbach RE (1970) J. Appl. Phys., 41,4208.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • K. Nagayama

There are no affiliations available

Personalised recommendations