Skip to main content

Shock Wave Interaction in Solid Materials

  • Chapter
Shock Waves in Materials Science

Abstract

Most of the experimental studies on shock wave propagation in condensed media has been directed toward the study of material science by using the extreme conditions realized by shock compression [1–3]. In this sense, the shock wave is regarded as a useful tool of studying materials. Unlike gases or liquids, solid materials have a wide variety of properties, which is usually hard to discuss in a universal manner. The so-called law of corresponding states known for gas and liquid systems does not apply to solids at least in the same sense. One of the exceptional example of universalities in solid materials is the empirical Hugoniot relationship between shock velocity and particle velocity [4]. This fact seems rather curious, considering the wide variety of materials measured. At least within author’s knowledge, the deep physical meaning of this universal law is still unknown. This law naturally comes from the form of equation of state, or from that of constitutive relations for the materials. It also includes much ambiguities, and is one of the major objectives of shock compression experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McQueen RG, Marsh SP, Taylor JW, Fritz JM and Carter WJ (1970) High Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York.

    Google Scholar 

  2. Murri WJ, Curran DR, Peterson CF and Crewdson RC (1974) Advances in High-Pressure Research Vol. 4, ed. R.H. Wentorf, Jr, Academic Press, London and New York, p.l.

    Google Scholar 

  3. Shock Compression of Condensed Matter (1990), Proc. APS Top. Conf. Albuquerque, 1989, ed. S.C. Schmidt, J.N. Johnson and L.W. Davison, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  4. Rodean HC (1977) J. Appl. Phys., 48, 2384.

    Article  ADS  Google Scholar 

  5. Prummer R (1987) Explosiveverdichtung Pulveriger Substanzen, Springer-Verlag, Berlin.

    Google Scholar 

  6. Meyers MA and Pak HR (1985) J. Mater. Sci., 20, 2133.

    Google Scholar 

  7. Mader CL (1966) Los Alamos Scientific Laboratory Report No. LA-3578.

    Google Scholar 

  8. Reaugh JE (1987) J. Appl. Phys., 61, 962.

    Article  ADS  Google Scholar 

  9. Keeler RN and Royce EB (1971) Physics of High Energy Density, ed. P. Cardirola and H. Knoepfei, Academic Press, New York and London.

    Google Scholar 

  10. Nagayama K (1981) Appl. Phys. Lett., 38, 109.

    Article  ADS  Google Scholar 

  11. Al'tshider LV, Kormer SB, Bakanova AA, Petrunin AP, Funtikov AI and Gubkin AA (1962) J.E.T.P. (English Translation), 14,986.

    Google Scholar 

  12. Krehl P, Hornemann U and Heilig W (1977) Proc. 11th Int. Symp. Shock Tubes & Waves, ed. B. Ahlborn, A. Hertzberg and D. Russel, Univ. Washington Press, Seattle, 1977.

    Google Scholar 

  13. Syono Y, Goto T and Sato T (1982) J. Appl. Phys., 53,7131.

    Article  ADS  Google Scholar 

  14. Neal T (1975) J. Appl. Phys., 46,2521.

    Article  ADS  Google Scholar 

  15. Ben-Dor G (1992) Shock Wave Reflection Phenomena, Springer-Verlag, New York.

    MATH  Google Scholar 

  16. Collier RJ, Burckhardt CB and Lin LH (1971) Optical Holography, Chap.l 1, Academic Press, New York and London.

    Google Scholar 

  17. Nagayama K and Mori Y (1992) submitted to Proc. 20th Int Cong. High-Speed Photo. Photonics, 21–25 Victoria, Canada 1992.

    Google Scholar 

  18. Dubovik AS (1968) Photographic Recording of High-speed Processes, [English Translation], Pergamon Press, Oxford.

    Google Scholar 

  19. Schäfer FP (1989) Dye Lasers - Topics in Applied Physics Vol 1, ed. F. P. Schäfer, Chap. 1, Springer-Verlag, Berlin.

    Google Scholar 

  20. Mori Y and Nagayama K (1992) submitted to Proc. 20th Int Cong. High-Speed Photo. Photonics, 21–25 Victoria, Canada 1992.

    Google Scholar 

  21. Nagayama K and Murakami T (1976) J. Phys. Soc. Japan 41, 359.

    Article  ADS  Google Scholar 

  22. Nagayama K (1992) submitted to J. Phys. Soc. Japan.

    Google Scholar 

  23. Nagayama K, Oka T and Mashimo T (1982) J. Appl. Phys. 53, 3029.

    Google Scholar 

  24. Nagayama K and Mashimo T (1982) in: High Field Magnetism, Proc. Int. Symp. High Field Magnetism, Osaka, Japan (North Holland, Amsterdam, 1983)

    Google Scholar 

  25. Nagayama K and Mashimo T (1984) in: Proc. 3rd Int. Conf Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, USSR (Nauka, Moscow, 1985)

    Google Scholar 

  26. Bichenkov EI, Gilev SD and Trubachev AM (1980) Zh. Prikl. Mekh. Tech. Fiz. 5,125.

    Google Scholar 

  27. Gilev SD and Trubachev AM (1982) Picima b JTF, 8,914.

    Google Scholar 

  28. Bichenkov EI, Gilev SD and Trubachev AM (1984) in: Proc. 3rd Int. Conf Megagauss Magnetic Field Generation and Related Topics, Novosibirsk, USSR (Nauka, Moscow, 1985)

    Google Scholar 

  29. Hawke RS, Duerre DE, Heubell JG, Keeler RN and Klapper H (1972) Phys. Earth Planet. Inter., 6,44.

    Google Scholar 

  30. Fowler CM, Garn WB and Caird RS (1960) J. Appl. Phys., 31, 588.

    Google Scholar 

  31. Somon JP (1969) J. Fluid Mech., 38,769.

    Article  ADS  MATH  Google Scholar 

  32. Nellis WJ, Ree FH, Trainor RJ, Mitchell AC and Boslough MB (1984) J. Chem. Phys. 80,2789.

    Google Scholar 

  33. LASL Shock Hugoniot Data, ed. by S.P. Marsh, Univ. Calif., Berkeley (Berkeley, Los Angels, London, 1980).

    Google Scholar 

  34. Barker LM and Hollenbach RE (1970) J. Appl. Phys., 41,4208.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Nagayama, K. (1993). Shock Wave Interaction in Solid Materials. In: Sawaoka, A.B. (eds) Shock Waves in Materials Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68240-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68240-0_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68242-4

  • Online ISBN: 978-4-431-68240-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics