A New Processing for the Self-propagating High-Temperature Synthesis (SHS) Combined with Shock Compression Technique

  • Y. Gordopolov
  • A. Merzhanov


Self-propagating high-temperature synthesis (SHS) is an efficient method of obtaining a wide range of materials and represents strongly exothermic interaction of reactants in condensed medium occurring in a combustion mode [1,2]. Thermal wave arising in a mixture of reactants is spreading spontaneously over matter and transforms it into reaction products showing valuable properties. The synthesis wave velocity makes a value of 10−3~−2 m/s. High temperatures at the reaction zone (about 103K) promote diffusion and provide purification of products from contaminations.


Titanium Carbide Combustion Wave Shock Compression Synthesis Wave HTSC Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merzhanov AG, Borovinskaya IP (1972) Dokl. Akad. Nauk SSSR 204: 366 (Russ.)Google Scholar
  2. 2.
    Merzhanov AG (1988) In: Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings, ISMAN (preprint), Chernogolovka, (Russ. & Eng.)Google Scholar
  3. 3.
    Rinehart JS, Pearson J (1963) In: Explosive Working of Metals, A Pergamon Press Book: New YorkGoogle Scholar
  4. 4.
    Prümmer R (1987) In: Explosivverdichtung pulvriger Substanzen. Grundlagen, Verfahren, Ergebnisse: Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (Germ.)Google Scholar
  5. 5.
    Fedorov VM, Gordopolov YuA (1990) In: The Study of Regimes for Explosive Pressing of HTSC SHS Ceramics, ISMAN (preprint), Chernogolovka, (Russ.)Google Scholar
  6. 6.
    Fedorov VM, Gordopolov YuA (1990) In: Shock-Wave Compaction of HTSC SHS Ceramics, ISMAN (perprint), Chernogolovka, (Russ.)Google Scholar
  7. 7.
    Gordopolov YUA, Fedorov VM (1990) In: HTSC Ceramics/Metal Composite Materials Fabricated by Explosive Pressing, VDNH SSSR (publicity), (Russ.)Google Scholar
  8. 8.
    Tabadze GF, Private CommunicationGoogle Scholar
  9. 9.
    Zotov NA, Private CommunicationGoogle Scholar
  10. 10.
    Sterser AA, Private CommunicationGoogle Scholar
  11. 11.
    Sharivker YuS, Fedorov VM, Private CommunicationGoogle Scholar
  12. 12.
    Adadurov GA, Borovinskaya IP, Merzhanov AG, Private Communication (1972–1987)Google Scholar
  13. 13.
    Gordopolov YUA, Shikhverdiev RM, Molokov IV, Bogatov YuV, Borovinskaya IP, Merzhanov AG (1988) In: The Study of Shock Wave Loading of Heated Reaction Products at Synthesis of Refractory Alloys in Combution Waves, ISMAN (perprint), Chernogolovka (Russ.)Google Scholar
  14. 14.
    Gordopolov YuA, Shikhverdiev RM, Molokov IV, Bogatov YuV, Borovinskaya IP, Merzhanov AG (1988)Proc. 7th Intern. Symp, Use of Explosive Energy in Manufacturing Metallic Materials of New Properties, Pardubice 2: Oct., 324Google Scholar
  15. 15.
    Gordopolov YUA, Fedorov VM, Molokov IV, Shikhverdiev RM, Merzhanov AG (1989) Proc. 10th Intern. Conf on High Energy Rate Fabrication, Ljubljana, Sept., 144Google Scholar
  16. 16.
    Gordopolov YuA, Molokov IV, Shikhverdiev RM, Pityulin AN, Efimov OYu, Zaripov NG, Petrova LV (1989) Proc. 16th All-Union Conf on Powder Metallurgy Sverdlovsk, May, 54, (Russ.)Google Scholar
  17. 17.
    Molokov IV, Mukasyan AS (1990) In: The Stopping of Combustion Wave by Explosive Effect on Ti-N-O System, ISMAN (preprint), Chernogolovka, (Russ.)Google Scholar
  18. 18.
    Niiler A, Kecskes LJ, Kottke T, Netherwood PH, Jr., Benck RF (1988) In: Ballistic Research Laboratory Report BRL-TR-2951, Aberdeen Proving Cround, Dec.Google Scholar
  19. 19.
    Niiler A, Kecskes LJ, Kottke T (1990) In: Combustion and Plasma Synthesis of High- Temperature Materials, edited by Munir ZA, Holt JB, VCH Publishers, Inc., New York, Weinheim, Basel, Cambrige, 309–314Google Scholar
  20. 20.
    Niiler A, Kecskes LJ, Kottke T (1990)Proc. 1st U.S.-Japanese Workshop on Combustion Synthesis, Japan, Jan. Paper T-5Google Scholar
  21. 21.
    Kecskes LJ, Kottke T, Niiler A (1990) J. Am. Ceram. Soc. 73: 1274CrossRefGoogle Scholar
  22. 22.
    Greve HA, Advani A, Thadhani NN, Kottke T (1991) Presented et the TMS Symposium on Reaction Synthesis of Materials, New Orleans, Feb. for publication in Metallurgical TransactionsGoogle Scholar
  23. 23.
    Advani AH, Thadhani NN, Greve HA, Heaps R, Coffin C, Kottke T (1991) Presented for publication in Scripta Metallurgica at Materialia, 31, Jan.Google Scholar
  24. 24.
    Kecskes LJ, Benck RF, Netherwood PH,Jr. (1990) J. Am. Ceram. Soc. 73: 383CrossRefGoogle Scholar
  25. 25.
    Rabin BH, Korth GE, Williamson RL, (1990) J. Am. Ceram. Soc. 73: 2156CrossRefGoogle Scholar
  26. 26.
    Fedorov VM, Shikhverdiev RM, Private CommunicationGoogle Scholar
  27. 27.
    Adadurov GA, Goldansky VI (1981) Uspekhi Khim. 50, Issue 10, 1810 (Russ.)Google Scholar
  28. 28.
    Adadurov GA (1986) Uspekhi Khim. 55: Issue 4, 555 (Russ.)Google Scholar
  29. 29.
    Akashi T, Sawaoka AB (1988) Advan. Ceram. Mater. 3: 288–290Google Scholar
  30. 30.
    Akashi T, Sawaoka AB (1988) Kogyo Kayaku 49: 278–284, (Jap.)Google Scholar
  31. 31.
    Akashi T, Sawaoka AB (1987) U.S. Patent, No.4, 655, 830, April 7Google Scholar
  32. 32.
    Mazein SA, Shmakov AM, Private CommunicationGoogle Scholar
  33. 33.
    Taylor PA, Boslough M, Horie Y (1987) Shock Waves in Condensed Matter, 395Google Scholar
  34. 34.
    Horie Y, Kipp ME (1987) Shock Waves in Condensed Matter, 387Google Scholar
  35. 35.
    Horie Y, Kipp ME (1988) J. Appl. Phys. 63: 5718ADSCrossRefGoogle Scholar
  36. 36.
    Boslough MR (1989) Chem. Phys. Lett. 160: 618ADSCrossRefGoogle Scholar
  37. 37.
    Maiden DE, Bianchini G, Holt B, Horning H, Kingman D (1985) Proc. DARPA/ARMY SHS Symp., Daytona Beach, Florida, Oct. 359Google Scholar
  38. 38.
    Kaunov AM, Private CommunicationGoogle Scholar
  39. 39.
    Molokov IV, Private CommunicationGoogle Scholar
  40. 40.
    Graham RA, Morosin B, Venturini EL, Carr MJ (1986) Ann. Rev. Mater. Sci. 76: 315ADSCrossRefGoogle Scholar
  41. 41.
    Gourdin WH (1984) Proc. Symp. Mater. Research. Soc. 24, 307CrossRefGoogle Scholar
  42. 42.
    Bednorz JG, Muller KA (1986) Z. Phys. B-Condensed Matter 64: 189ADSCrossRefGoogle Scholar
  43. 43.
    Chu CW et al. (1987) Phys. Rev. Lett. 58: 405ADSCrossRefGoogle Scholar
  44. 44.
    Wu MK et al. (1987) Phys. Rev. Lett. 58: 908ADSCrossRefGoogle Scholar
  45. 45.
    Nersesyan MD, Merzhanov AG (1990) “SHS in the High-Temperature Superconductivity Problem”, Analytical Review 1969–1989: No.5111, Moscow (Russ.)Google Scholar
  46. 46.
    Merzhanov AG, Peresada AG, Nersesyan MD, Borovinskaya IP et al. (1988)Pismo v ZETF 47: Issue 11, 604 (Russ.)ADSGoogle Scholar
  47. 47.
    Merzhanov AG, Lisikov SV, Nersesyan MD, Borovinskaya IP et al. (1988)Pismo v ZTF 14: 1770 (Russ.)Google Scholar
  48. 48.
    Murr LE, Hare AW, Eror NG (1987)Nature 329: Sept. 37ADSCrossRefGoogle Scholar
  49. 49.
    Mur LE et al. (1988) J. of Superconductivity 1: 3ADSCrossRefGoogle Scholar
  50. 50.
    Murr LE, Monson T, Javadpour J, Strasik M, Sudarsan U, Eror NG, Hare AW, Brasher DG, Butler DJ (1988) J. of Metals 40: 19Google Scholar
  51. 51.
    Akashi T, Sawaoka AB (1987) J. of Mat. Sci. 22: 1031ADSCrossRefGoogle Scholar
  52. 52.
    Kamiya K, Ikazaki F, Uchida K, Goto A, Kawamura M, Tanaka K, Fujiwara S (1987) Yogyo-Kyokai-Shi 95: 480 (Jap.)CrossRefGoogle Scholar
  53. 53.
    Dremin AN, Breusov ON (1978) Nauka i Zizn No.2: 28 (Russ.)Google Scholar
  54. 54.
    Batsanov SS (1986) Uspekhi Khim. 55: Issue 4, 579 (Russ.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • Y. Gordopolov
  • A. Merzhanov

There are no affiliations available

Personalised recommendations