Advertisement

The Role of Thermal Energy in Shock Consolidation

  • M. A. Meyers
  • S. S. Shang
  • K. Hokamoto

Abstract

Dynamic consolidation has considerable potential for densifying high strength materials which are very difficult to sinter by conventional techniques. Formation of dense compacts requires the collapse of the gaps between the particles as well as considerable amount of energy deposited at the particle surfaces for interparticle bonding. The ultra rapid deformation and energy deposition in shock consolidation produces partial melting at the particle surfaces followed by a rapid solidification via heat conduction into the interior of the particles. A series of attempts have been made by a number of investigators to consolidate these difficult-to-consolidate powders [1–6]. However, there exist two major problems. One is cracking of the compacts at both the microscopic and macroscopic level. The other is a lack of uniformity in microstructure and mechanical properties within the resulting compacts. Three novel approaches have been implemented: (1) shock consolidation of pre-heated specimens; (2) shock densification at a low pressure (just above threshold for pore collapse) followed by hot isostatic pressing (hipping); (3) use of local shock-induced reactions to increase temperatures of particle interfaces and enhance bonding. Fig. 1 shows, in a schematic fashion, these three approaches.

Keywords

Shock Wave Impact Velocity Explosive Charge Shock Pressure Diamond Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akashi T, Sawaoka AB (1987) Mater. Sci. 22: 3276.ADSCrossRefGoogle Scholar
  2. 2.
    Akashi T, Sawaoka AB (1987) J. Mater. Sci. 22: 1127.ADSCrossRefGoogle Scholar
  3. 3.
    Sawai S, Kondo K (1990) J. Am. Ceram. Soc. 73: 2428.CrossRefGoogle Scholar
  4. 4.
    Sawai S, Kondo K (1988) J. Am. Ceram. Soc. 71: C-185CrossRefGoogle Scholar
  5. 5.
    Tan T, Ahrens TJ (1988) J. Mater. Res. 3:1010.ADSCrossRefGoogle Scholar
  6. 6.
    Potter DK, Ahrens TJ (1987) Appl Phys. Lett. 51: 317.ADSCrossRefGoogle Scholar
  7. 7.
    Shang SS, Meyers MA (1991) Metall. Trans. 22A: 2667.Google Scholar
  8. 8.
    Shang SS, Hokamoto K, Meyers MA (1992) J. Mater. Sci. 27:5470.ADSCrossRefGoogle Scholar
  9. 9.
    Wang SL, Meyers MA, Szecket A (1988) J. Mater. Sci. 23: 1786.ADSCrossRefGoogle Scholar
  10. 10.
    Coker HL, Meyers MA, Wessels JF (1991) J. Mater. Sci. 25: 1277.ADSCrossRefGoogle Scholar
  11. 11.
    Ferreira A, Meyers MA, Thadhani NN, Chang SN, Kough JR (1991) Metall. Trans. 22A: 685.Google Scholar
  12. 12.
    Ferreira A, Meyers MA, Thadhani NN (1992) Metall. Trans., in press.Google Scholar
  13. 13.
    Yu LH, Meyers MA, Thadhani NN (1990) J. Mater. Res. 5: 302.ADSMATHCrossRefGoogle Scholar
  14. 14.
    Gourdin WH (1984) J. Appl. Phys. 55: 172.ADSCrossRefGoogle Scholar
  15. 15.
    Schwarz RB, Kasiraj P, Vreeland T Jr, Ahrens TJ (1984) Acta Metall. 32: 1243.CrossRefGoogle Scholar
  16. 16.
    Nesterenko VF (1988) Proe. Novosibirsk-Conference on Dynamic Compaction, 100.Google Scholar
  17. 17.
    Meyers MA, Murr LE (1981) in Shock Wave and High - Strain - Rate Phenomena in Metals, eds. Meyers MA, Murr LE, Plenum Press, N.Y., 487.CrossRefGoogle Scholar
  18. 18.
    Lotrich VF, Akashi T, Sawaoka A (1986) in Metallurgical Applications of Shock Wave and High - Strain - Rate Phenomena, eds. Murr LE, Staudhammer KP, Meyers MA.Google Scholar
  19. 19.
    Elliott NE, Staudhammer KP (1992) in Shock Wave and High -Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 371.Google Scholar
  20. 20.
    Ferreira A, Meyers MA (1992) in Shock Wave and High - Strain - Rate Phenomena in Matrials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 361.Google Scholar
  21. 21.
    Carroll MM, Holt AC (1972) J. Appi. Phys., 43: 1626.ADSCrossRefGoogle Scholar
  22. 22.
    Norwood FR, Graham RA (1992) in Shock Wave and High- Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 989.Google Scholar
  23. 23.
    Shang SS, Meyers MA, unpublished results.Google Scholar
  24. 24.
    Helle AS, Easterling KE, Ashby MF (1985) Acta Metall. 33: 2163.CrossRefGoogle Scholar
  25. 25.
    Fischmeister HF, Arzt E (1983) Powder Metall. 26: 82.Google Scholar
  26. 26.
    Arzt E (1982) Acta Metall. 30: 1883.CrossRefGoogle Scholar
  27. 27.
    Staudhammer KP, Murr LE (1988) in Shock Waves for Industrial Applications, ed. Murr LE, NO YES Publishers, N.J., 237.Google Scholar
  28. 28.
    Norwood FR, Graham RA, Sawaoka A (1986) in Shock Waves in Condensed Matter, ed. Gupta YM, Plenum Press, 837.CrossRefGoogle Scholar
  29. 29.
    Thadhani NN, Holman GT, Romero B, Graham RA (1991) CETR Report No. A-01–91Google Scholar
  30. 30.
    Korth GE, Flinn JE, Green RC (1986) in Metallurgical Applications of Shock Wave and High - Strain - Rate Phenomena, eds. Murr LE, Staudhammer KP, Meyers MA, Marcel Dekker Inc., N.Y., 129.Google Scholar
  31. 31.
    Mutz AH, Vreeland T Jr. (1992) in Shock Wave and High - Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 425.Google Scholar
  32. 32.
    Ahrens TJ, Bond GM, Yang W, Liu G (1992) in Shock Wave and High - Strain - Rate Inc., N.Y., 339.Google Scholar
  33. 33.
    Sawaoka AB, Horie Y (1992) in Shock Wave and High - Strain - Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP Marcel Dekker Inc., N.Y., 323.Google Scholar
  34. 34.
    Prümmer R (1987) Explosivverdichtung Pulvriger Substanzen, Springer-Verlag, Berlin, Germany..Google Scholar
  35. 35.
    Meyers MA, Gupta BB, Murr LE (1981) J. of Metals 33: 21.Google Scholar
  36. 36.
    Meyers MA, Wang SL (1988) Acta Metall. 4: 925.Google Scholar
  37. 37.
    Gurney RK (1943) The Initial Velocities of Fragments From Bombs, Shells, and Grenades, BRL Report 405.Google Scholar
  38. 38.
    Yu LH, Meyers MA (1992) in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker Inc., N.Y., 303.Google Scholar
  39. 39.
    Meyers MA, Pak H.-r, (1985) J. Mater. Sci. 20: 2133.ADSCrossRefGoogle Scholar
  40. 40.
    Wang SL, Meyers MA, Graham RA (1986) in Shock Waves in Condensed Matter, ed. Gupta YM, Plenum Press, 731.CrossRefGoogle Scholar
  41. 41.
    Morris DG (1981): Met. Sci. 15: 116.CrossRefGoogle Scholar
  42. 42.
    Potter DK, Ahrens TJ (1988) J. Appi. Phys. 63: 910.ADSCrossRefGoogle Scholar
  43. 43.
    Yu LH, Meyers MA (1991) J. Mater. Sci. 26: 601.ADSCrossRefGoogle Scholar
  44. 44.
    Kunishige K, Horie Y, Sawaoka AB (1992) in Shock Wave and High-Strain-Rate Phenomena in Materials, eds. Meyers MA, Murr LE, Staudhammer KP, Marcel Dekker.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • M. A. Meyers
  • S. S. Shang
  • K. Hokamoto

There are no affiliations available

Personalised recommendations