Advertisement

Shock Compression Studies on Ceramic Materials

  • T. Mashimo

Abstract

Although shock-wave propagation in solid is a momentary phenomenon whose time interval is within several microseconds, such waves can generate ultra-high pressure conditions, to inducing changes in crystal or electric structure of condensed matter, and even nuclear reaction. The high-pressure equation of state, phase transition, dynamic mechanical behavior, etc. of solid matter are explored through by the measurement of shock-wave properties (Hugoniot) parameters (shock velocity, particle velocity, stress, etc.). The Hugoniot parameters of many materials, including elementary and compound materials, have been measured by the discreet-type methods (pin-contactor methods, flash gap method etc.,) and the continuous-type methods (condenser method, electromagnetic-gauge method, quartzgauge method, manganin-gauge method, inclined-mirror method, laser interferometer method (VISAR), etc.) over the past 40 years by scientists chiefly in the USA and the USSR. In particular, many elementary metals and oxide minerals have been widely investigated in relation to the high-pressure physics of matter and the earth and planetary science [1–6]. However, in these early studies, the measurement methods were, in many cases, discreet type, and the specimen qualities were poor compared with more recent studies. For ceramics, the reported number of shock-compression research studies has not been many, and the ceramic specimens used in the early studies were, in many cases, sintered ceramics with large porosity.

Keywords

Shear Strength Impact Velocity Shock Front Shock Compression Streak Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LASL Shock Hugoniot Data (1980) edited by Marsh SP, University of California, Berkeley.Google Scholar
  2. 2.
    Compendium of Shock Wave Data 1 (1966) ed. by van Thiel M, University of California, Livermore, California, (NTIS).Google Scholar
  3. 3.
    McQueen RG, Marsh SP, Taylor JW, Fritz JN, Carter WJ (1970) High-Velocity Impact Phenomena: ed. by Kinslow R, Academic Press, New York, 244.Google Scholar
  4. 4.
    Al’tshuler LV (1965) Sov. Phys. Uspekhi. 8: 52.ADSCrossRefGoogle Scholar
  5. 5.
    Ahrens TJ, Gregson VG Jr (1964) J. Geophys. Res. 69: 4839.ADSCrossRefGoogle Scholar
  6. 6.
    McQueen RG, Marsh SP, Fritz JN (1967) J. Geophys. Res. 72: 4999.ADSCrossRefGoogle Scholar
  7. 7.
    Abou-Seyed AS, Clifton RJ, Herman L (1976) Exp. Mech. 6: 121.Google Scholar
  8. 8.
    Gupta YM (1976) Appl. Phys. Lett. 29: 694.ADSCrossRefGoogle Scholar
  9. 9.
    Chhabildas LC, Swegle JW (1980) J. Appl. Phys. 51: 4799.ADSCrossRefGoogle Scholar
  10. 10.
    Mashimo T, Ozaki S, Nagayama K (1984) Rev. Sci. Instr. 55: 226.ADSCrossRefGoogle Scholar
  11. 11.
    Ahrens TJ, Gust WH, Royce EB (1968) J. Appl. Phys. 39: 4610.ADSCrossRefGoogle Scholar
  12. 12.
    Goto T, Syono Y (1980) SCI. REP. RITU. A-Vol 29: 32.Google Scholar
  13. 13.
    Mashimo T, Nakamura A, Hamada Y (1992) Proc. 20th Internai. Congress on High Speed Photography and Photonics (to be publiushed).Google Scholar
  14. 14.
    unpublished data.Google Scholar
  15. 15.
    Keough DD, Wong TY (1970) J. Appl. Phys. 41: 3608.CrossRefGoogle Scholar
  16. 16.
    Gupta YM (1983) J. Appl. phys. 54: 6265ADSGoogle Scholar
  17. 17.
    Vantine HC, Erickson LM, Janzen JA (1980) J. Appl. Phys. 51: 1957.ADSCrossRefGoogle Scholar
  18. 18.
    Chartagnac PF (1982) J. Appl. Phys. 53: 948.ADSCrossRefGoogle Scholar
  19. 19.
    Mashimo T, Hanaoka Y, Nagayama K (1988) J. Appl. Phys. 63: 327.ADSCrossRefGoogle Scholar
  20. 20.
    unpublished data.Google Scholar
  21. 21.
    Dremin AN, and Adadurov GA (1964) Sov. Phys. Solid State 6: 1397.Google Scholar
  22. 22.
    Mashimo T, Nagayama K (1986) Jpn. J. Appl. Phys. 25, Suppl. 25–1: 103.Google Scholar
  23. 23.
    Gupta YM, Keough DD, Walter DF, Dao KC, Henly D, Urtiew A (1980) Rev. Sci. Instr. 51:183.ADSCrossRefGoogle Scholar
  24. 24.
    Mashimo T (1988) Shock Wave in Condensed Matter 1987: ed. Schmidt SC, Holmes NC, North-Holland, 285.Google Scholar
  25. 25.
    McQueen RG, Marsh SP (1960) in Handbook of Physical Constants: ed. Clerk SP Jr, Geophysical Society of America, New York, Chap. 7.Google Scholar
  26. 26.
    Pavlovskii MN (1971) Sov. Phys. Solid State 12: 1736.Google Scholar
  27. 27.
    Graham RA, Brooks WP (1971) Phys. Chem. Solids 32: 2311.ADSCrossRefGoogle Scholar
  28. 28.
    Gust WH, Royce EB (1971) J. Appl. Phys. 42: 276.ADSCrossRefGoogle Scholar
  29. 29.
    Sato T, Akimoto S (1979) J. Appl. Phys. 50: 5285.ADSCrossRefGoogle Scholar
  30. 30.
    Rosenberg Z, Yaziv D, Yeshurun Y, Bless SJ (1987) J. Appl Phys. 62: 1120.ADSCrossRefGoogle Scholar
  31. 31.
    Gieske JH, Barsch GR (1968) Phys. Stat. Sol 29: 121.ADSCrossRefGoogle Scholar
  32. 32.
    Mashimo T, Nagayama K, Sawaoka A (1983) Phys. Chem. Minerals 9: 237.ADSCrossRefGoogle Scholar
  33. 33.
    Wackerle J (1962) J. Appl Phys. 33: 922.ADSCrossRefGoogle Scholar
  34. 34.
    Mashimo T, Kodama M, Nagayama K (1988) Advans in Ceramics 24: 329.Google Scholar
  35. 35.
    Mashimo T, Kodama M, Kusaba K, Fukuoka K, Syono Y (1990) Shock Compression of Condensed Matter 1989: edited by Schmidt SC, Johnson JN, Davison LW, North-Holland, 469.Google Scholar
  36. 36.
    Mashimo T, Kodama M, Kusaba K, Fukuokja K, Syono Y (1992) Proc. 18th Internai. Symp. Shock Waves: ed. Takayama K, Springer-Verlag, 441.Google Scholar
  37. 37.
    Syono Y, Goto T (1980) SCI. REP. RITU. A-Vol 29: 17.Google Scholar
  38. 38.
    Arashi H, Private Communication.Google Scholar
  39. 39.
    Garvie RC, Hannink RN, Pasoe RT (1975) Nature 256: 713.CrossRefGoogle Scholar
  40. 40.
    Mashimo T (1988) J. Appl. Phys. 63: 4141.CrossRefGoogle Scholar
  41. 41.
    Grady DE, Mashimo T (1992) J. Appl Phys. 71: 4868.ADSCrossRefGoogle Scholar
  42. 42.
    Barker LM, Hollenbach RE (1972) J. Appl Phys. 43: 4669.ADSCrossRefGoogle Scholar
  43. 43.
    Ohtaka O, Kume S, Ito E (1988) J. Am. Ceram. Soc. 71: C-448.Google Scholar
  44. 44.
    unpublished dataGoogle Scholar
  45. 45.
    Nakamura A, Mashimo T, Nishida M, Matsuzaki S (1990) Proc. 1989 Nationat. Symp. Shock Wave Phenomena: 145Google Scholar
  46. 46.
    Ogata T, Kihara M, Nakamura K, Kobayashi K (1988) J. Ceram. Soci. Jpn. 96: 310.CrossRefGoogle Scholar
  47. 47.
    Kamijo E, Honda M, Higuchi M, Yamakawa H, Komura O (1983) Sumitomodenki 123: 139 (in Japanese).Google Scholar
  48. 48.
    Mashimo T, Nakamura A, Wakamori K, Miyake M (1990) J. Soc. Mat. Sci. 39: 1615 (in Japanese).CrossRefGoogle Scholar
  49. 49.
    unpublished dataGoogle Scholar
  50. 50.
    Asay JR, Hicks DL, Holdridge DB (1975) J. Appl Phys. 46: 4316.ADSCrossRefGoogle Scholar
  51. 51.
    Stöffler D (1972) Fortschr. Mineral, 49: 50.Google Scholar
  52. 52.
    Ananin AV, Brevson ON, Dremin AN, Pershin SV, Tatsii VF (1974) Combustion Expros. Shock Waves 10: 426.Google Scholar
  53. 53.
    Muller WF, Hornemann U (1969) Earth. Planet. Sci. Lett. 7: 251.ADSCrossRefGoogle Scholar
  54. 54.
    Reimold WU, Stoffler D (1978) Proc. Lunner. Planet. Sci. Conf 9th.: 2805.Google Scholar
  55. 55.
    Klein MJ (1965) Phil Mag. 12: 735.ADSCrossRefGoogle Scholar
  56. 56.
    Bauer JF (1979) Proc. Lunar. Planet. Sci. Conf. 10th: 2573.Google Scholar
  57. 57.
    Mori H (1985) J. Jpn. Crys. Soc. 27: 179.Google Scholar
  58. 58.
    Brannon PJ, Konrad CH, Morris RW, Jones ED, Asay JR (1983) SAND82–2469.Google Scholar
  59. 59.
    Grady DE (1980) J Geophys J Res. 85: 913.ADSCrossRefGoogle Scholar
  60. 60.
    Granz AJ (1988) Phys. Chem. Minerals, 16: 221.ADSGoogle Scholar
  61. 61.
    Goto T, Syono Y (1985) J. Appl Phys. 58: 2548.ADSCrossRefGoogle Scholar
  62. 62.
    Goto T, Sato T, Syono Y (1982) Jpn. J. Appl. Phys. 21: L369.ADSCrossRefGoogle Scholar
  63. 63.
    Engelhardt W, Stoffler D (1968) Shock Metamorphism of Natural Minerals: edited by French B, Short N, Mono. Press. Baltimore, 159.Google Scholar
  64. 64.
    Jeanloz R, Ahrens TJ, Lally JS, Nord GL Jr, Christie JM, Heuer AH (1972) Science 197: 457.ADSCrossRefGoogle Scholar
  65. 65.
    Bogdanov AG, Popov S AS, Rundenko VS (1971) Engl. Transl. Acad. Sci. USSR Proc. Chem. Sect. 201: 1011.Google Scholar
  66. 66.
    DeCarli PS, Milton DJ (1965) Science 147: 144.ADSCrossRefGoogle Scholar
  67. 67.
    Davison L, Graham RA (1979) Phys. Rep. 55: 255.ADSCrossRefGoogle Scholar
  68. 68.
    Mashimo T (1988) Shock Waves in Condensed Matter. 1987: edited by Schmidt SC, Holmes NC, North-Holland, 289.Google Scholar
  69. 69.
    Bless SJ, Brar NS, Rozenberg A (1988) Shock Waves in Condesed Matter 1987: edited by Schmidt SC, Holmes NC, North-Holland, 309.Google Scholar
  70. 70.
    Rosenberg Z, Brar NS, Bless SJ (1991) J. Appl. Phys. 70: 167.ADSCrossRefGoogle Scholar
  71. 71.
    Sumitomo Electric Industri Co. Ltd., Private Communicatins.Google Scholar
  72. 72.
    Horiguchi A, Ueno F, Tsuge A (1986) Toshiba Review, 44: 616.Google Scholar
  73. 73.
    Asay JR, Chhabildas LC, Dandekar DP (1980) J. Appl. Phys. 51: 4774.ADSCrossRefGoogle Scholar
  74. 74.
    Gust WH, Holt AC, Royce EB (1973) J. Appl. Phys. 44: 550ADSCrossRefGoogle Scholar
  75. 75.
    Gust WH, Royce EB (1971) J. Appl. Phyts. 42: 276.ADSCrossRefGoogle Scholar
  76. 76.
    Kipp ME, Grady DE (1990) Shock Compression of Condensed Matter 1989: edited by Schmidt SC, Johnson JN, Davison LW, North-Holland, 469.Google Scholar
  77. 77.
    Swegle JW, Grady DE (1985) J. Appl. Phys. 58: 692.ADSCrossRefGoogle Scholar
  78. 78.
    Gilman JJ (1979) J. Appl. Phys. 50: 4059.ADSCrossRefGoogle Scholar
  79. 79.
    Abou-Seyed AS, Clifton RJ, Herman L (1976) Exp. Mech. 6: 127CrossRefGoogle Scholar
  80. 80.
    Steinberg D, Cochran S, Guinan M (1980) J. Appl. Phys. 51: 1498.ADSCrossRefGoogle Scholar
  81. 81.
    Barker LM, Scott DD (1984) Sandia Report SAND84–0432.Google Scholar
  82. 82.
    Sternberg J (1988) Appl. Phys. 65: 3417.Google Scholar
  83. 83.
    Addessio FL, Johnson TN (1990) J. Appl. Phys. 67: 3275.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • T. Mashimo

There are no affiliations available

Personalised recommendations