Shock-Induced Chemical Reactions in Inorganic Powder Mixtures

  • Y. Horie


The field of shock compression chemistry in material synthesis was described in 1985 as being in an early stage of development and an exercise in old-fashioned chemistry with a poorly characterized process [1]. The field was said to hold promise for future technological developments, but there are too many unsolved problems, including those that are not yet well posed. Even today, this assessment of the field is probably still accurate in spite of progress that has been made over the last decade. Since most shock chemistry studies involving nonenergetic materials have been carried out using recovery experiments with powder mixtures, the analysis and interpretation of observed chemical reactions have not always been unambiguous because of one or more of the following: inherent heterogeneity in composition, phase, morphology, material deformation, and chemical reactions, etc. As a result the delineation of basic mechanisms and process parameters has not been easy, nor always possible. However, the advantage of inorganic powders over energetic materials is that much of products can be recovered intact for post-shock characterization.


Shock Wave Impact Velocity Powder Mixture Shock Compression Shock Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Du vail GE (1984) Shock Compression Chemistry in Material Synthesis and Processing: NMAB-414: Nat. Acad. Press, Washington, D. C.Google Scholar
  2. 2.
    Hoy DEP,Akashi M, Park JK, Horie Y, Whitfield JK (1984) Shock Waves in Condensed Matter-1983: edited by. Asay JR et al, Elsevier, New York, 451.Google Scholar
  3. 3.
    Horie Y (1984) ibid., 369.Google Scholar
  4. 4.
    Kock CC, Kim MS (1986) J. Phsique 46: C8–573.Google Scholar
  5. 5.
    Suslick KS (1986) Modern Synthetic Methods 4: 1Google Scholar
  6. 6.
    Kubo K (1978) Introduction to Mechanochemistry, Tokyo Kagaku Dojin, Tokyo, (Japanese).Google Scholar
  7. 7.
    Horiguchi Y, Nomura Y (1963) Bull. Chem. Soc. Japan 36: 486.CrossRefGoogle Scholar
  8. 8.
    Westbrook JH (1959) Mechanical Properties of Intermetallic Compounds: Wiley, New York, 1959.Google Scholar
  9. 9.
    Graham RA, Webb DM (1984) Shock Waves in Condensed Matter-1983: edited by Asay JR et al, Elsevier, New York, 423.Google Scholar
  10. 10.
    Hoy DPE (1985) unpublished Ph.D thesis, North Carolina State University, Raleigh, NC.Google Scholar
  11. 11.
    Horie Y, Hoy DEP, Simonsen I, Graham RA, Morosin B (1986) Shock Waves in Condensed Matter: edited by Gupta YM, Plenum, New York, 749CrossRefGoogle Scholar
  12. 12.
    Horie Y, Graham RA, Simonsen IK (1985) Mat. Letters 3: 354.CrossRefGoogle Scholar
  13. 13.
    Horie Y (1986) Mat. Appi. of Shock Waves and High-Stain-Rate Phenomena: edited by Murr LE, Staudhammer KP, Meyers MA, Marcel Dekker, New York, 1023.Google Scholar
  14. 14.
    Simonsen IK, Horie Y, Graham RA, Carr M (1987) Mat. Letters 5: 75.CrossRefGoogle Scholar
  15. 15.
    Pak H, Horie, Y, Graham RA (1986), Shock Waves in Condensed Matter: edited by Gupta YM, Plenum, New York, 1986, 761.Google Scholar
  16. 16.
    Bennett LS, Sorrell FY, Iyer KR, Simmonsen IK, Horie Y(1992) Appi. Phys. Letters 61: Google Scholar
  17. 17.
    Thadhani N (1992) presentation at a Workshop, May 5–7, Los Alamos, NM.Google Scholar
  18. 18.
    Hoover W et al (1990) Microscopic Simulations of Complex Flows: Plenum, New York.,321.Google Scholar
  19. 19.
    Hammeter WF, Graham RA, Morosin B, Horie, Y (1988) Shock Waves in Condensed Matter 1987: edited by Schmidt SC, Holmes NC, Elsevier, New York, 431.Google Scholar
  20. 20.
    Simonsen IK, Horie Y, Akashi T, Sawaoka AB (1992) Shock-Wave and High-Strain- Rate Phenomena in Materials: edited by Meyers MA Murri LE, Staudhammer KP, Marcel Dekker, New York, 233.Google Scholar
  21. 21.
    Myers et al (1986) Shock Waves in Condensed Matter: edited by Gupta YM, Plenum, New York, 755.CrossRefGoogle Scholar
  22. 22.
    Zemsky SV, Ryabchikov YA, Epshteyn GN (1979) Fiz. Metal. Matalloved. 46:111. Google Scholar
  23. 23.
    Kleiman J Heimann RB, Hawken D, Salanky NM (1984) J. Appl. Phys. 56: 1440.ADSCrossRefGoogle Scholar
  24. 24.
    Simonsen IK, Chevacharoenkul S, Horie Y, Akashi T, Sawaoka A (1989) J. Mat. Sci. 24: 1486.ADSCrossRefGoogle Scholar
  25. 25.
    Simonsen I.K, Horie Y, Akashi T, Sawaoka AB (1992) J.Mat. Sci. 27: 1735.ADSCrossRefGoogle Scholar
  26. 26.
    Stadelmaier HH (1960) Z. Metallkde. 51: 601.Google Scholar
  27. 27.
    Sawaoka AB, Akashi T (1987) U. S. Patents 4,655,830 and 4,695,321.Google Scholar
  28. 28.
    Nellis W, Gourdin WH, Maple MB (1988) Shock Waves in Condensed Matter -1987: dited by Schmidt SC, Holmes NC, Elsevier, New York, 407.Google Scholar
  29. 29.
    Kunishige H, Oya Y, Fukuyama Y, Watanabe S, Tamura H, Sawaoka A, Taniguchi T, Horie Y (1990) Rept. of the Res. Lab. ofEngr. Mat.(No. 15): Tokyo Institute of Tech., 235.Google Scholar
  30. 30.
    Horie Y, Kipp M (1988) J. Appi. Phys. 63: 5718.ADSCrossRefGoogle Scholar
  31. 31.
    Baer MR, Nunziato JW (1986) Int. J. of Multiphase Flow 12: 861.MATHCrossRefGoogle Scholar
  32. 32.
    C. Trusdell (1969) Rational Thermodynamics: McGraw-Hill, New York.Google Scholar
  33. 33.
    Atkin RJ, Craine RE (1976) Q. Jl Mech. Appl. Math. 29: 209.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • Y. Horie

There are no affiliations available

Personalised recommendations