Advertisement

Solid State Reactivity of Shock-Processed Solids

  • R. A. Graham
  • N. N. Thadhani

Abstract

Under high pressure shock-compressive loading, materials are forced into unusual and distinctive states not achieved in other processes. The rapidity of the application of high pressures, and the stress states are controlled by the inertial responses of the solids themselves as they are plastically deformed to the high pressure states which bring them into momentary balance with the pressures of the loading sources. Because of the large plastic deformations, unusually large concentrations of defects are produced at all levels of description: atomic, mesoscopic, microscopic and macroscopic. The high pressures, large deformations, rapidity of the process, elevated temperatures, large defect concentrations, and unusual defect configurations and states, provide the potentially interesting possibility for shock processing to produce unusual metastable states or unusual net-shape-processed solids.

Keywords

Solid State Reactivity Powder Mixture Residual Strain Shock Compression Densification Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graham RA, Webb DM (1984) Shock Waves in Condensed Matter-1983: edited by Asay JR, Graham RA, Straub GK, North Holland, Amsterdam, 211.Google Scholar
  2. 2.
    Graham RA, Webb DM (1986) Shock Waves in Condensed Matter-1985: edited by Gupta YM, Plenum NY, 831.Google Scholar
  3. 3.
    Graham RA, Morosin B, Horie Y, Venturini EL, Boslough M, Carr MJ, Williamson DL (1986)Shock Waves in Condensed Matter -1985: edited by Gupta YM, Plenum, 693.Google Scholar
  4. 4.
    Graham RA, Morosin B, Venturini EL, Carr MJ (1986) Ann. Rev. Mater. Sci. 16: 315.ADSCrossRefGoogle Scholar
  5. 5.
    Morosin B (1986) High Pressure Explosive Processing of Ceramics: edited by Graham RA, Sawaoka AB, Trans Tech, 285.Google Scholar
  6. 6.
    Carr MJ, Graham RA, Morosin B, Venturini EL (1984) Defect Properties and Processing of High-Technology Nonmetallic Materials: edited by Crawford JH Jr., Chen Y, Sibley WA, North Holland, 343.Google Scholar
  7. 7.
    Carr MJ (1986) High Pressure Explosive Processing of Ceramics: edited by Graham RA, Sawaoka AB, Trans Tech, 341.Google Scholar
  8. 8.
    Schmalzried H (1981)Solid State Reactions: Verlag Chemie.Google Scholar
  9. 9.
    West AR (1984) Solid State Chemistry and its Applications: WileyGoogle Scholar
  10. 10.
    Carr MJ, Graham RA (1986) Metallurgical Applications of Shock Waves and High- Strain-Rate Phenomena: edited by Murr LE, Staudhammer KP, Meyers MA, Marcel Dekker, 1037.Google Scholar
  11. 11.
    Morosin B, Graham RA (1985) Materials Letters 3: 119.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Stewart JM, Morosin B, Graham RA, Hubbard CR (1989) Applied Physics Communications 9: 183.Google Scholar
  13. 13.
    Hammetter WF, Hellmann JR, Graham RA, Morosin B (1984) Shock Waves in Condensed Matter-1983: edited by Asay JR, Graham RA Straub GK, North Holland, 391.Google Scholar
  14. 14.
    Beauchamp EK, Carr MJ (1990) J. American Ceramic Soc., 73: 49.CrossRefGoogle Scholar
  15. 15.
    Hankey DL, Graham RA, Hammetter WF, Morosin B (1982) J. Materials Science Lett. 1: 445.CrossRefGoogle Scholar
  16. 16.
    Beauchamp EK (1987) “Shock-Activated Sintering,High-Pressure Explosive Processing of Ceramics: eds. Graham RA, Sawaoka AB, Trans Tech Publications, 139.Google Scholar
  17. 17.
    Bergmann OR, Barrington J (1966) J. Amer. Ceram. Soc. 49: 502.CrossRefGoogle Scholar
  18. 18.
    Barrington J, Bergmann OR (1968) Preparation of Brittle Inorganic Poly crystalline Powders by Shock-Wave Technique: U.S. Patent 3,367,766.Google Scholar
  19. 19.
    Heckel RW, Youngblood JL (1968) Amer. Ceram. Soc. 51: 398.CrossRefGoogle Scholar
  20. 20.
    Priimmer RA, Ziegler G (1977) Powder Metallurgy International 9: 11.Google Scholar
  21. 21.
    Hoeing CL Yust CS (1981)Bull. Amer. Ceram. Soc. 60: 1175 and 1221.Google Scholar
  22. 22.
    Beauchamp EK, Cair MJ (1987) High-Pressure Explosive Processing of Ceramics: edited by Graham RA, Sawaoka AB, Trans Tech Publ., 175.Google Scholar
  23. 23.
    Beauchamp EK, Graham RA, Carr MJ (1984) Mater. Res. Soc. Symp. Proc. 24: edited by Crawford JH Jr., Chen Y, Sibley WA, 281.Google Scholar
  24. 24.
    Morosin B, Graham RA (1984) Mater. Res. Soc. Symp. Proc. 24: edited by Crawford JH Jr., Chen Y, Sibley, WA, 335.Google Scholar
  25. 25.
    Carr MJ, Beauchamp EK (1983) Shock Waves in Condensed Matter-1983: edited by Asay JR et al, 403.Google Scholar
  26. 26.
    Morosin B, Graham RA (1984) Shock Waves in Condensed Matter 1983: edited by Asay JR et al, 355.Google Scholar
  27. 27.
    Beauchamp EK, Carr MJ, Graham RA (1985) J. Amer. Cer. Soc. 68: 696.CrossRefGoogle Scholar
  28. 28.
    Beauchamp EK, Carr MJ, Graham RA (1987) Adv. Ceram. Matls. 2: 79.Google Scholar
  29. 29.
    Williamson DL, Venturini EL, Graham RA, Morosin B (1986) Phys. Rev. B34: 1899.ADSGoogle Scholar
  30. 30.
    Beauchamp EK, Loehman RE, Graham RA, Morosin B, Venturini EL (1984) Emergent Process Methods for High-Technology Ceramics: edited by Davis RF, Palmour III H, Porter RL, Plenum, 735.Google Scholar
  31. 31.
    Casey WH, Carr MJ, Graham RA (1988) Geochimica et Cosmochimica Acta, 52: 1545.ADSCrossRefGoogle Scholar
  32. 32.
    Golden J, Williams F, Morosin B, Venturini EL, Graham RA (1982) Shock Waves in Condensed Matter-1981: edited by Nellis WJ, Seaman L, Graham RA, American Institute of Physics, 72.Google Scholar
  33. 33.
    Williams FL, Lee YK, Morosin B, Graham RA (1986) Shock Waves in Condensed Matter-1985: edited by Y. M. Gupta, Plenum, 791.Google Scholar
  34. 34.
    Merzhanov AG (1988) Combustion and Plasma Synthesis of High Temperature Materials: Holt JB, Munir ZA, American Ceramic Society, October, 1.Google Scholar
  35. 35.
    Munir ZA, Anselmi-Tamburini U (1989) Mater. Sci. Rep. 3: 211. Google Scholar
  36. 36.
    Bordeaux F, Yavari AR (1990) J. Mater. Res. 5: 1656.ADSCrossRefGoogle Scholar
  37. 37.
    Ma E, Thompson CV, Clevenger LA (1992) MRS Symp. Proc. on Kinetics of Phase Transformations: edited by Thompson MO, Aziz MJ, Stephenson Brian G, Vol. 205, Materials Research Society, Pittsburgh, 203.Google Scholar
  38. 38.
    Hida GT, Lin IJ (1988) Combustion and Plasma Synthesis of High Temperature Materials: edited by Holt JB, Munir ZA, American Ceramic Society, October, 246.Google Scholar
  39. 39.
    Thadhani NN, Srinivasan S, Schwarz RB, unpublished results.Google Scholar
  40. 40.
    Hammetter WF, Graham RA, Morosin B, Horie Y (1988) Shock Waves in Condensed Matter-1987: edited by Schmidt SC, Holmes NC, North Holland, 431.Google Scholar
  41. 41.
    Dunbar E, Thadhani NN, Graham RA (1991)J. Mater. Sci. in Press.Google Scholar
  42. 42.
    Dunbar E (1992) Master Thesis, New Institute of Mining and Technology.Google Scholar
  43. 43.
    Vreeland T, Mutz A “Shock Synthesis of Ti-Si Powder Mixtures, unpublished results.Google Scholar
  44. 44.
    Advani AH, Thadhani NN, Grebe HA, Heaps R, Coffin C, Kottke T (1992) J. Mater. Sci., 27: 3309.ADSCrossRefGoogle Scholar
  45. 45.
    Grebe HA, Thadhani NN, unpublished results.Google Scholar
  46. 46.
    Iqbal Z, Thadhani NN, Chawla N, Ramakrishna BL, Sharma R, Skumeyev S, Reidinger F, Eckhardt H (1989) Appi Phys. Letts. 55: 2339.ADSCrossRefGoogle Scholar
  47. 47.
    Syono Y, this volume.Google Scholar
  48. 48.
    Graham RA (1989) Proc. of 3rd Int. Symp. on High Dynamic Pressure: edited by Cheret R, Commissariat a l’Energie Atomic, Paris, 175.Google Scholar
  49. 49.
    Thadhani NN (1993) Prog. Mat. Sci. 37: 117.CrossRefGoogle Scholar
  50. 50.
    Graham RA (1993) Solids Under High Pressure Shock Compression: Mechanics, Physics, and Chemistry, Springer-VerlagCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • R. A. Graham
  • N. N. Thadhani

There are no affiliations available

Personalised recommendations