Comparative Study of Three Pedicle Screw Devices

  • Reinhard Steffen
  • Lutz-Peter Nolte
  • Jürgen Krämer


There are a wide variety of indications for lumbar fusion in orthopedic and traumatic surgery. Lehmann et al. reported that the incidence of lower lumbar fusions for orthopedic diseases in the United States doubled between 1979 and 1983 [1]. In the field of trauma surgery of the spine, various authors have described the advantages of operative treatmet of compression and burst fractures over conservative non-operative treatment [2–4]. Considerations as to whether internal fixation devices are necessary differ depending on the trauma or orthopedic indications. Operative treatment of thoracolumbar fractures requires internal stabilization to maintain position and reduce the load on the anterior and middle column of the spine until the fracture has healed, irrespective of the necessity of simultaneous posterolateral fusion [4]. Lower lumbar or lumbosacral fusions in orthopedic cases are generally performed as in situ fusions except in cases of spondylolisthesis where some authors recommend reposition so only stability is required to support the bone fusion. The main problem of lumbar fusion is the considerably high rate of pseudarthrosis, that ranges between 18% and 49% depending on the number of fused segments and the kind of fusion (posterolateral or interbody) [5].


Bone Mineral Density Pedicle Screw Fixation Device Lumbar Fusion Thoracolumbar Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehmann TR, Spratt KF, Tozzi JE, Weinstein JN, Reinarz SJ, El-Khoury GY, Colby H (1987) Long-term follow-up of lower lumbar fusion patients. Spine 12: 97–104PubMedCrossRefGoogle Scholar
  2. 2.
    Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8: 817–831PubMedCrossRefGoogle Scholar
  3. 3.
    Dick W (1984) Innere Fixation von Brust- und Lendenwirbelfrakturen. Aktuelle Probleme in Chirurgie und Orthopädie Bd. 28. Huber, BernGoogle Scholar
  4. 4.
    Jacobs RR, Casey MP (1984) Surgical management of thoracolumbar spinal injuries. Clin Orthop 189: 22–35PubMedGoogle Scholar
  5. 5.
    Kozak JA, O’Brien JP (1990) Simultaneous combined anterior and posterior interbody fusion. Spine 15: 322–328PubMedCrossRefGoogle Scholar
  6. 6.
    Johnston II CE, Asham RB, Corin JD, Welch RD (1989) Effect of spinal construct stiffness on early fusion mass incorporation. Trans Ann Meet Orthop Res Soc 14: 364Google Scholar
  7. 7.
    McAffee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1991) The effect of spinal implant rigidity on vertebral bone density: A canine model. Spine 16: 190–197Google Scholar
  8. 8.
    Krödel A, Refior H, Plitz W (1991) Biomechanical basis of compressive ventral interbody fusion. Abstracts of the 18th Annual Meeting ISSLS, Heidelberg, 12–16 May, p 29Google Scholar
  9. 9.
    Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices. I. A conceptual framework. Spine 13: 1129–1134PubMedCrossRefGoogle Scholar
  10. 10.
    Panjabi MM, Abumi K, Duranceau J, Crisco JJ (1988) Biomechanical evaluation of spinal fixation devices. II. Stability provided by eight internal fixation devices. Spine 13: 1135–1140Google Scholar
  11. 11.
    Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14: 1249–1255Google Scholar
  12. 12.
    Ashman RB, Birch JG, Bone LB, et al. (1988) Mechanical testing of spinal instrumentation. Clin Orthop 227: 113–125PubMedGoogle Scholar
  13. 13.
    Ferguson RL, Tencer AF, Woodard P, Allen BL (1988) Biomechanical comparisons of spinal fracture models and stabilizing effects of posterior instrumentations. Spine 13: 453–460PubMedCrossRefGoogle Scholar
  14. 14.
    Goel VK, Nye TA, Clark CR, Nishiyama K, Weinstein JN (1987) A technique to evaluate an internal device by use of the selspot system. Spine 12: 150–159PubMedCrossRefGoogle Scholar
  15. 15.
    Gurr KR, McAffee PC, Shih CM (1988) Biomechanical analysis of posterior instru-mentation systems after decompressive laminectomy: An unstable calf spine model. J Bone Joint Surg [Am] 70: 680–691Google Scholar
  16. 16.
    Gurr KR, McAffee PC, Shih CM (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy: A calf spine model. J Bone Joint Surg [Am] 70: 1182–1191Google Scholar
  17. 17.
    Krag MH, Beynnon BD, Pope MH, et al. (1986) An internal fixateur for posterior application to short segments of thoracic, lumbar, or lumbosacral spine: Design and testing. Clin Orthop 203: 75–98Google Scholar
  18. 18.
    Wittenberg RH, Coffee MS, Edwards WT, White AA (1990) Zyklische Belastung-stests verschiedener Wirbelsäulenimplantate. Hefte zur Unfallheilkunde 212: 528–529Google Scholar
  19. 19.
    Wörsdörfer O (1981) Operative Stabilisierung der thorakolumbalen und lumbalen Wirbelsäule: Vergleichende biomechanische Untersuchungen zur Stabilität und Steifigkeit verschiedener dorsaler Fixationssysteme. Thesis, Klinisch-Medizinische Fakultät, UlmGoogle Scholar
  20. 20.
    Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16: 647–652PubMedCrossRefGoogle Scholar
  21. 21.
    Roy-Camille R, Saillant G, Berteaux D, Saigado V (1976) Osteosynthesis of thoracolumbar spine fractures with metal plates screwed through the vertebral pedicles. Reconstr Surg Traumatol 15: 2–16PubMedGoogle Scholar
  22. 22.
    Panjabi MM, Goel VK, Takata K (1982) Physiological strains in lumbar spinal ligaments. Spine 7: 192–201PubMedCrossRefGoogle Scholar
  23. 23.
    Mann KA, McGowan DP, Fredrickson BE, Falahee M, Yuan HA (1990) A biomechanical investigation of short segment spinal fixation for burst fractures with varying degrees of posterior disruption. Spine 15: 470–478PubMedCrossRefGoogle Scholar
  24. 24.
    Goel VK, Kim YE, Lim TH, Weinstein JN (1989) Mechanics of load transfer across a spinal fixation device. Trans Ann Meet Orthop Res Soc 14: 363Google Scholar

Copyright information

© Springer-Verlag Tokyo 1993

Authors and Affiliations

  • Reinhard Steffen
    • 1
  • Lutz-Peter Nolte
    • 2
  • Jürgen Krämer
    • 1
  1. 1.Department of Orthopaedic SurgerySt. Josef Hospital, Ruhr University BochumBochumGermany
  2. 2.Bioengineering CenterWayne State UniversityDetroitUSA

Personalised recommendations