Skip to main content

Comparative Study of Three Pedicle Screw Devices

  • Chapter
Lumbar Fusion and Stabilization

Abstract

There are a wide variety of indications for lumbar fusion in orthopedic and traumatic surgery. Lehmann et al. reported that the incidence of lower lumbar fusions for orthopedic diseases in the United States doubled between 1979 and 1983 [1]. In the field of trauma surgery of the spine, various authors have described the advantages of operative treatmet of compression and burst fractures over conservative non-operative treatment [2–4]. Considerations as to whether internal fixation devices are necessary differ depending on the trauma or orthopedic indications. Operative treatment of thoracolumbar fractures requires internal stabilization to maintain position and reduce the load on the anterior and middle column of the spine until the fracture has healed, irrespective of the necessity of simultaneous posterolateral fusion [4]. Lower lumbar or lumbosacral fusions in orthopedic cases are generally performed as in situ fusions except in cases of spondylolisthesis where some authors recommend reposition so only stability is required to support the bone fusion. The main problem of lumbar fusion is the considerably high rate of pseudarthrosis, that ranges between 18% and 49% depending on the number of fused segments and the kind of fusion (posterolateral or interbody) [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehmann TR, Spratt KF, Tozzi JE, Weinstein JN, Reinarz SJ, El-Khoury GY, Colby H (1987) Long-term follow-up of lower lumbar fusion patients. Spine 12: 97–104

    Article  PubMed  CAS  Google Scholar 

  2. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8: 817–831

    Article  PubMed  CAS  Google Scholar 

  3. Dick W (1984) Innere Fixation von Brust- und Lendenwirbelfrakturen. Aktuelle Probleme in Chirurgie und Orthopädie Bd. 28. Huber, Bern

    Google Scholar 

  4. Jacobs RR, Casey MP (1984) Surgical management of thoracolumbar spinal injuries. Clin Orthop 189: 22–35

    PubMed  Google Scholar 

  5. Kozak JA, O’Brien JP (1990) Simultaneous combined anterior and posterior interbody fusion. Spine 15: 322–328

    Article  PubMed  CAS  Google Scholar 

  6. Johnston II CE, Asham RB, Corin JD, Welch RD (1989) Effect of spinal construct stiffness on early fusion mass incorporation. Trans Ann Meet Orthop Res Soc 14: 364

    Google Scholar 

  7. McAffee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1991) The effect of spinal implant rigidity on vertebral bone density: A canine model. Spine 16: 190–197

    Google Scholar 

  8. Krödel A, Refior H, Plitz W (1991) Biomechanical basis of compressive ventral interbody fusion. Abstracts of the 18th Annual Meeting ISSLS, Heidelberg, 12–16 May, p 29

    Google Scholar 

  9. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices. I. A conceptual framework. Spine 13: 1129–1134

    Article  PubMed  CAS  Google Scholar 

  10. Panjabi MM, Abumi K, Duranceau J, Crisco JJ (1988) Biomechanical evaluation of spinal fixation devices. II. Stability provided by eight internal fixation devices. Spine 13: 1135–1140

    Google Scholar 

  11. Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14: 1249–1255

    Google Scholar 

  12. Ashman RB, Birch JG, Bone LB, et al. (1988) Mechanical testing of spinal instrumentation. Clin Orthop 227: 113–125

    PubMed  CAS  Google Scholar 

  13. Ferguson RL, Tencer AF, Woodard P, Allen BL (1988) Biomechanical comparisons of spinal fracture models and stabilizing effects of posterior instrumentations. Spine 13: 453–460

    Article  PubMed  CAS  Google Scholar 

  14. Goel VK, Nye TA, Clark CR, Nishiyama K, Weinstein JN (1987) A technique to evaluate an internal device by use of the selspot system. Spine 12: 150–159

    Article  PubMed  CAS  Google Scholar 

  15. Gurr KR, McAffee PC, Shih CM (1988) Biomechanical analysis of posterior instru-mentation systems after decompressive laminectomy: An unstable calf spine model. J Bone Joint Surg [Am] 70: 680–691

    Google Scholar 

  16. Gurr KR, McAffee PC, Shih CM (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy: A calf spine model. J Bone Joint Surg [Am] 70: 1182–1191

    Google Scholar 

  17. Krag MH, Beynnon BD, Pope MH, et al. (1986) An internal fixateur for posterior application to short segments of thoracic, lumbar, or lumbosacral spine: Design and testing. Clin Orthop 203: 75–98

    Google Scholar 

  18. Wittenberg RH, Coffee MS, Edwards WT, White AA (1990) Zyklische Belastung-stests verschiedener Wirbelsäulenimplantate. Hefte zur Unfallheilkunde 212: 528–529

    Google Scholar 

  19. Wörsdörfer O (1981) Operative Stabilisierung der thorakolumbalen und lumbalen Wirbelsäule: Vergleichende biomechanische Untersuchungen zur Stabilität und Steifigkeit verschiedener dorsaler Fixationssysteme. Thesis, Klinisch-Medizinische Fakultät, Ulm

    Google Scholar 

  20. Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16: 647–652

    Article  PubMed  CAS  Google Scholar 

  21. Roy-Camille R, Saillant G, Berteaux D, Saigado V (1976) Osteosynthesis of thoracolumbar spine fractures with metal plates screwed through the vertebral pedicles. Reconstr Surg Traumatol 15: 2–16

    PubMed  CAS  Google Scholar 

  22. Panjabi MM, Goel VK, Takata K (1982) Physiological strains in lumbar spinal ligaments. Spine 7: 192–201

    Article  PubMed  CAS  Google Scholar 

  23. Mann KA, McGowan DP, Fredrickson BE, Falahee M, Yuan HA (1990) A biomechanical investigation of short segment spinal fixation for burst fractures with varying degrees of posterior disruption. Spine 15: 470–478

    Article  PubMed  CAS  Google Scholar 

  24. Goel VK, Kim YE, Lim TH, Weinstein JN (1989) Mechanics of load transfer across a spinal fixation device. Trans Ann Meet Orthop Res Soc 14: 363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Steffen, R., Nolte, LP., Krämer, J. (1993). Comparative Study of Three Pedicle Screw Devices. In: Yonenobu, K., Ono, K., Takemitsu, Y. (eds) Lumbar Fusion and Stabilization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68234-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68234-9_29

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68236-3

  • Online ISBN: 978-4-431-68234-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics