Skip to main content

Spray Formation and Combustion

  • Chapter
Advanced Combustion Science

Abstract

Phase-Doppler anemometry is a measuring technique which developed out of laser Doppler anemometry to enable simultaneous measurements of velocity and size of particles whose diameters are larger than or comparable to the fringe spacing in the measuring volume. Based on general considerations on light scattering (see Durst [1]) and pertinent verification experiments, Durst & Zaré [2] demonstrated in 1975 that the general belief was incorrect that good laser Doppler signals could only result from particles that were much smaller than the fringe spacing. Using geometrical optics, fringe spacing in the scattered light field was correlated with the particle diameter. By means of a pair of detectors, phase-shifted signals were measured and used to verify the theoretical estimates of scattered fringe spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durst F, (1973) Scattering phenomena and their applications in optical anemometry. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 24: 619–643

    Article  ADS  Google Scholar 

  2. Durst F and Zaré M (1975) Laser doppler measurements in two-phase flows. LDA-Symposium, Copenhagen, Congress Proceedings, pp 403–429

    Google Scholar 

  3. Bachalo WD and Houser MJ (1984) Phase/doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Optical Eng. 23 pp 583–590

    Google Scholar 

  4. Saffman M, Buchhave P, and Tanger H (1984) Simultaneous measurements of size, concentration, and velocity of spherical particles by a laser doppler method. Proc. 2nd Int. Symp. on Appl. Laser Anemometry to Fluid Mechanics, Lisbon

    Google Scholar 

  5. Bauckhage K and Flögel H (1984) Simultaneous measurements of droplets size and velocity in nozzle sprays. Proc. 2nd Int. Symp. on Appl. Laser Anemometry to Fluid Mechanics, Lisbon

    Google Scholar 

  6. Beretta F, Cavaliere A, and D’Alessio A (1983) Experimental and theoretical analysis of the angular distribution and polarization state of the light scattered by isothermal sprays and oil flames, Combust. Flame. 49:183

    Article  Google Scholar 

  7. Beretta F, Cavaliere A, and D’Alessio A (1984) Ensemble light scattering diagnostics or the study of fuel sprays in isothermal and burning conditions. 20’th Symp.(Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 1249–1258

    Google Scholar 

  8. Beretta F, D’Alessio A, and Noviello C (1986) Spray vaporization and soot formation in flames generated by light oils with different chemical composition. 21’st Symp.(Intl.) on Combust., The Combustion Institute, Pittsburgh, pp 1133–1140

    Google Scholar 

  9. Arnone L, Beretta F, D’Alessio A, Ossler F, and Tregrossi A (1992) Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays, to be presented at the 24’th Symp.(Intl.) on Combust., Sydney

    Google Scholar 

  10. Beretta F, Cavaliere A, D’Alessio A, Massoli P, and Ragucci R (1986) A Spectral scattering method for determining size distribution functions and optical characteristics of droplets ensembles in fuel sprays. 21’st Sympo.(Intl.) on Combust. The Combustion Institute, Pittsburgh, pp 675–683

    Google Scholar 

  11. Massoli P, Beretta F, and D’Alessio A, (1989) Single droplets size, velocity, and optical characteristics by the polarization properties of scattered light. App. Opt., 28, 6: 1200–1205

    Article  ADS  Google Scholar 

  12. Massoli P, Beretta F, and D’Alessio A (1990) Pyrolysis in the liquid phase inside single droplets of light oil studied with laser light scattering methods. Combust. Sci. and Tech., 72: 271–282

    Article  Google Scholar 

  13. Massoli P, Beretta F, D’Alessio A, and Lazzaro M, Temperature and size of single transparent droplets by light scattering in the forward and rainbow regions, submitted for publication on Applied Optics.

    Google Scholar 

  14. Cavaliere A, Ragucci R, D’Alessio A, and Noviello C (1991) Digital imaging of condensed phases fields in ignited unsteady sprays. Comb. Sci. and Tech., 77: 73–93

    Article  Google Scholar 

  15. Ragucci R, Cavaliere A, Ciajolo A, D’Anna A, and D’Alessio A (1992) Structures of diesel sprays in isobaric combustion conditions, to be presented at the 24’th Symp.(Intl.) on Combust., Sydney

    Google Scholar 

  16. Miake-Lye RC and Toner SJ (1987) Laser soot- scattering imaging of a large Buoyant diffusion flame. Combustion and Flame, 67, 9–26: 9

    Article  ADS  Google Scholar 

  17. Cavaliere A, Ragucci R, D’alessio A, and Cardamone P (1990) Morphological analysis of diesel sprays structure in ignition regimes. Proceeding of Workshop and Exposition on Fluid Mechanics, Combustion and Emission in Reciprocating Engines, Naples, Italy, 89

    Google Scholar 

  18. Won YH, Kamimoto T, Kobayashi H, and Kosaka H (1991) 2-D Soot visualization in unsteady spray flame by means of laser sheet scattering technique. SAE technical paper series 910223

    Book  Google Scholar 

  19. Shioji M, Yamane K, Sakakibara N and, Ikegami M (1990) Characterization of soot clouds and turbulent mixing in diesel flame by image analysis. Proc. of Intl. Symp. On Diagnostics and Modeling Combustion in Reciprocating Engines (COMODIA 90), Kyoto, Japan, pp 613–6180

    Google Scholar 

  20. Dec JE (1992) Soot distribution in a D. I diesel engines using 2-D imaging of laser-induced incandescence, elastic scattering, and flame Luminosity, SAE technical paper series 920115

    Book  Google Scholar 

  21. Bhatia JC, Domnick J, Durst F, and Tropea C, (1988) Doppler anemometry and the log-hyperbolic distribution applied to liquid sprays. Part. Part. Syst. Charact. 5: 153–164

    Article  Google Scholar 

  22. Naqwi A, Durst F and Liu X (1991) Extended phase-doppler system for characterization of multiphase flows. Part. Syst. Char., 8: 16–22

    Article  Google Scholar 

  23. Naqwi A, Ziema M, and Durst F (1992) Fine particle sizing using an extended phase doppler anemometer. Proc. 5th Euro. Sym. Part. Char., pp 267–279

    Google Scholar 

  24. Bopp S, Tropea C, and Durst F (1990) In-cylinder velocity measurements with a mobile fiber optic LDA system. SAE technical paper series 900055

    Book  Google Scholar 

  25. Domnick J, Durst F, Müller R and Naqwi A (1991) Improved optical systems for velocimetry and particle sizing using semiconductor lasers and detectors, in the book Applications of Laser Techniques to Fluid Mechanics (Ed.: Adrian, Duráo, Durst, Maeda, Whitelaw), Springer-Verlag, pp 317–330

    Google Scholar 

  26. van de Hulst HC (1991) Light scattering by small particles. Dover publications, New York

    Google Scholar 

  27. Roth N, Anders K, and Frohn A (1991) Refractive index measurements for the correction of particle sizing methods. App.Opt., 30, 33: 4960–4965

    Article  ADS  Google Scholar 

  28. Melton LA (1984) Soot diagnostics based on laser heating. Applied Optics 23–13: 2201

    Article  Google Scholar 

  29. Won Y-H, A study of formation and extinction of soot in unsteady spray flames, Dr. Thesis, Tokyo Institute of Technology

    Google Scholar 

  30. Cossali GE, Brunello G, and Coghe A (1991) LDV characterization of air entrainment in transient diesel sprays, SAE technical paper series 910178

    Book  Google Scholar 

  31. Flenklach M, Ramachandra MK, and Matula RA (1984) Soot formation in shock-tube oxidation of hydrocarbons. 20’th Sympo.(Intl.) on Combust. The Combustion Institute, pp 871–878

    Google Scholar 

  32. Furutani M, Ohta Y, Terada K, and Takahashi H (1991) Soot formation in low-temperature compression ignition, 9th Internal Combustion Engine Symp., Tokyo, Japan, pp 433–438 (in Japanese)

    Google Scholar 

  33. Rayleigh (1878/79) On the instability of jets, Proc. London Math. Soc, 10: 4–13

    Article  Google Scholar 

  34. Sauter J (1926) Die Größenbestimmung der im Gemischnebel von Verbrennungskraft-maschinen vorhandenen Brennstoffteilchen, VDI-Z, 70:1040–1042

    Google Scholar 

  35. Haenlein A (1931) Über den Zerfall eines Flüssigkeitsstrahls, Forschung, 2:139–149

    Google Scholar 

  36. O’Rourke JK (1981) Collective drop effects on vaporizing liquid sprays, Ph. Thesis, Princeton University

    Google Scholar 

  37. Reitz RD (1978) Atomization and other breakup regimes of a liquid jet, Ph. Thesis, Princeton University

    Google Scholar 

  38. Eifler W (1990) Untersuchungen zur Struktur des instationaren Dieseleinspritzstrahles im Düsennahbereich mit der Methode der Hochrequenz-Kinematographie, Thesis, Universität Kaiserslautern

    Google Scholar 

  39. Bergwerk W (1959) Flow pattern in diesel nozzle spray holes, Proc. Instn. Mech. Engrs., 173–25: 655–660

    Article  Google Scholar 

  40. Ruiz F and Chigier N (1985) The mechanics of high speed atomization, Proc. of ICLASS, 1, S 6B 13/1, London

    Google Scholar 

  41. Kuniyoshi H, Tanabe H, Sato, GT, and Fujimoto H (1980) Investigation on the characteristics of diesel fuel spray, Trans. SAE 89–800968

    Book  Google Scholar 

  42. Kamimoto T, Yokota H, and Kobayashi H (1987) Effect of high pressure injection on soot formation process in a rapid compression machine to simulate diesel flames, SAE technical paper series 871610

    Book  Google Scholar 

  43. Browne KR, Partridge IM, and Greeves G (1986) Fuel property effects on fuel/air mixing in an experimental diesel engine, SAE technical paper series 860223

    Book  Google Scholar 

  44. Scheid E, Pischinger F, Knoche KF, Daams H-J, Hassel EP, and Reuter U (1986) Spray combustion chamber with optical access, ignition zone visualization and first raman measurements of local air-fuel rates, SAE technical paper series 861121

    Book  Google Scholar 

  45. Melton LA (1983) Spectrally separated fluorescence emission for diesel fuel droplets and vapor, Applied Optics, 22–14: 2224–2226

    Article  Google Scholar 

  46. Bardsley MEA, Felton PG, and Bracco FV (1988) 2-D visualization of liquid and vapor fuel in an I.C. engine, SAE technical paper series 880521

    Book  Google Scholar 

  47. Fujimoto H., Tanabe H., Kuniyoshi H, and Sato GT (1983) Investigation on combustion in medium-speed diesel engine using model chamber, Proc. 15th CIMAC, Paris, D13,3:1471–1490

    Google Scholar 

  48. Lakshminarayan PA and Dent JC (1983) Interferometic studies of vaporizing and combusting sprays, SAE technical paper series 830224

    Book  Google Scholar 

  49. Naber JD and Reitz RD (1988) Modeling engine spray/wall impingement, SAE technical paper series 880107

    Book  Google Scholar 

  50. Abramovitch GN (1963) The theory of turbulent jets, MIT Press, Massachusetts

    Google Scholar 

  51. Rajaratnum N (1976) Turbulent jets, Elsvier, Amsterdam (1976)

    Google Scholar 

  52. Yip B and Long MB (1986) Instantaneous planar measurement of the complete three-dimensional scalar gradient in a turbulent jet, Optics letters, 11: 64–66

    Article  ADS  Google Scholar 

  53. Miller PL and Dimotakis PE (1991) Reynolds number dependence of scalar fluctuations in a high Schmidt number turbulent jet, Phys. Fluids A3(5) 1156–1163 1151.

    ADS  Google Scholar 

  54. Johnston SC, Robinson CW, Rorke WS, Smith JR, and Witze PO (1979) Application of laser diagnostics to an injected engine, SAE Trans., 790079

    Book  Google Scholar 

  55. Tanabe H, Suzuki N, Sorihashi T, Fujimoto H, and Sato GT (1982) Experimentalstudy on transient gas jet, Proc. XIX FISITA, No. 82026

    Google Scholar 

  56. Hamamoto Y, Tomita E, Tsunashima Y, Nsunge FC, and Ikeda K (1990) Measurement of gas jet concentration by laser interferometry, J. Marine Engineering Society of Japan, 25–8: 498–504

    Google Scholar 

  57. Shirakashi, M. and Wakiya, M. (1986) A study of turbulent structure in an impulsively started jet by means of an image analysis, Trans. JSME. 52–475, B 1032

    Google Scholar 

  58. Cho IY, Fujimoto H, Kuniyoshi H, Ha J-Y, Tanabe H, and Sato GT (1990) Similarity law of entrainment into diesel spray and steady spray, SAE technical paper series 900447

    Book  Google Scholar 

  59. Jost W (1939) Explosions-und Verbrennungsvorgaenge in Gasen, Verlag von Julius Springer, Berlin

    Google Scholar 

  60. Lewis B and von Elbe G (1961) Combustion, flames and explosions of gases, Academic Press Inc., New York and London

    Google Scholar 

  61. Wolfer HH (1938) Der Zuendverzug im Dieselmotor, VDI- Forschungsheft 392: 15–24

    Google Scholar 

  62. Miwa K, Ohmija T. and Nishitani T (1988) A study of the ignition delay of diesel fuel spray using a rapid compression machine, JSME Int. J. II,31–1:166–172

    Google Scholar 

  63. Kamimoto T and Kobayashi H (1991) Combustion process in diesel engines, Prog. Energy Combust. Sci., 17: 163–189

    Article  Google Scholar 

  64. Martinengo A, Wagner HG, and Zunft D (1959) Untersuchungen ueber Selbstzuendungsreaktionen von Kohlenwasserstoff-Luftmischungen durch adiabatische Verdichtung, Z. Phys. Chemie, N.F. 22: 292–304

    Article  Google Scholar 

  65. Terao K (1991) Combustion and detonation waves, IPC, Tokyo

    Google Scholar 

  66. Liao C, Terao K, and Utaka Y (1992) Ignition probability in a fuel spray, Jpn. J. Appl. Phys., 31–7: 2299–2303

    Article  ADS  Google Scholar 

  67. Ranz WE (1958) Some Experiments on Orifice Sprays, The Canadian J. of Chem. Engs., 175–181

    Google Scholar 

  68. Wagener J (1992) Ein digitales Bildverarbeitungssystem zur Auswertung hochfreequenter Bildfoigen von Dieseleinspritzstrahlen, Thesis, Universität Kaiserslautern

    Google Scholar 

  69. Katsura N, Saito M, Senda J, and Fujimoto H (1989) Characteristics of a diesel spray impinging on a flat wall, Trans. SAE 89–890264

    Google Scholar 

  70. Fujimoto H, Senda J, Nagae N, and Hashimoto A (1990) Characteristics of a diesel spray impinging on a flat wall, Proc. COMODIA90, Kyoto, pp 193–198

    Google Scholar 

  71. Senda J, Fukami Y, Tanabe Y, and Fujimoto H (1992) Visualization of evaporative diesel spray impinging upon wall surface by exciplex fluorescence method, SAE technical paper series 920578

    Book  Google Scholar 

  72. Terao K, Liao C, and Utaka Y (1991) Proc. 1st Intern. Conf. on Combust. Techn. for Clean Environment, Vilamoura, Engines II, pp.26–32

    Google Scholar 

  73. Hiroyasu H (1985) Diesel engine combustion and its modeling, COMODIA 85, pp 3–75

    Google Scholar 

  74. Kato T, Tsujimura K, Shintani M, Minami T, and Yamaguchi I.(1989) Spray characteristics and combustion improvement of D.I. diesel engine with high pressure fuel injection, SAE technical paper series 890265

    Book  Google Scholar 

  75. Yokota H, Kamimoto T, Kosaka H, and Tsujimura K (1991) Fast burning and reduced soot formation via ultra-high pressure diesel fuel injection, SAE technical paper series 910225

    Book  Google Scholar 

  76. Nishida K, Ochiai M, Arai H, and Hiroyasu H (1991) Characteristics of diesel sprays at high-pressure injection, preprint of the Japan Society of Mechanical Engineers, 904–4: 68–70 (in Japanese)

    Google Scholar 

  77. Shimada T, Shiji T, and Takeda Y (1989) The effect of fuel injection pressure on diesel engine performance, SAE technical paper series 891919

    Book  Google Scholar 

  78. Hiroyasu H, Nishida K, Yoshikawa S, Kown S, and Arai M (1991) Combustion process in a D.I. diesel engine with high pressure combustion chamber on NOx emission, Trans. of Japan Society of Automotive Engineers, 22–4: 53–58 (in Japanese).

    Google Scholar 

  79. Faeth GM (1987) Mixing, transport and combustion in sprays, Prog. Energy Combust. Sci., 13: 293–345

    Article  ADS  Google Scholar 

  80. Chigier NA (1976) The atomization and burning of liquid fuel sprays, Prog. Energy Combust. Sci., 2: 97–114

    Article  Google Scholar 

  81. Lefebre AH (1989) Atomization and sprays, Hemisphere Publising Corporation, New York.

    Google Scholar 

  82. Takagi T, Fan CY, Kamimoto T. and Okamoto T (1991) Numerical simulation of evaporation, ignition and combustion of transient sprays, combustion science and technology, 75: 1–12

    Google Scholar 

  83. Onuma Y and Ogasawara M (1975) Studies on the structure of a spray combustion flame, 15th Symp. (Int.) on Combust., pp.453–465

    Google Scholar 

  84. Brena de la Rosa A, Sobiesiak A, and Brzustowski TA (1988) The influence of fuel properties on drop-size distribution and combustion in an oil spray, 21st Symposium(Intemational) on Combustion, pp 557–566

    Google Scholar 

  85. Mizutani Y, Yasuma G, and Katsuki M (1977) Stabilization of spray flames in a high-temperature stream, 16th Symposium (International) on Combustion, pp 631–638

    Google Scholar 

  86. Edwards CF and Rudoff RC (1990) Structure of a swirl-stabilized spray flame by imaging, laser doppler velocimetry and phase doppler anemometry, 23rd Symposium (International) on Combustion, pp 1353–1359

    Google Scholar 

  87. O’rourke PJ (1981) Collective drop effects on liquid spray, Ph. D. Thesis, Princeton University

    Google Scholar 

  88. Nakabe K, Mizutani Y. and Hirao T (1988) Burning characteristics of premixed sprays and gas-liquid coburning mixtures, Combust. Flame 74–1: 39–51

    Article  Google Scholar 

  89. Mizutani Y and Nishimoto T (1972) Turbulent flame velocities in premixed sprays, Part I. Experimental study, Combust. Sci. and Tech. 6–1/2: 1–11

    Article  Google Scholar 

  90. Mizutani Y and Nakajima A (1973) Combustion of fuel vapor-drop-air systems: Part I-Open burner flames, Combust. Flame 20–3: 343–350

    Article  Google Scholar 

  91. Chiu HH, Kim HY, and Croke EJ (1982) Internal group combustion of liquid droplets, 19th Symposium (Int.) on Combustion, pp.971–980

    Google Scholar 

  92. Nakabe K, Mizutani Y, and Hirao T (1991) An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel, Combust. Flame 84–1/2: 3–14

    Article  Google Scholar 

  93. Won YH, Kamimoto T, and Kosaka H (1992) A study on soot formation in unsteady spray flames via 2-D soot imaging, SAE technical paper series 920114

    Book  Google Scholar 

  94. Tanabe H and Sato GT (1990) Experimental study on unsteady wall impinging jet, SAE technical paper series 900605

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Kamimoto, T. (1993). Spray Formation and Combustion. In: Someya, T. (eds) Advanced Combustion Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68228-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68228-8_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68230-1

  • Online ISBN: 978-4-431-68228-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics