Skip to main content

Clinical Biomechanics of the Spine

  • Chapter
Biomechanics in Orthopedics

Abstract

The spine lends support to the body and forms the fulcrum on which muscles act to cause motion and to resist inertial and external forces. In clinical terms it is most significant that it also provides flexible armor to the spinal cord and cauda equina. Owning in part to its unique, dual roles of support and protection and to the number of pain and other neurological problems arising in the spine, it has received widespread attention from scientists as well as clinicians. In addition to the obvious concern of physicians and surgeons in disorders of the spine, the allied professions also seek a better understanding of the nature of pain-related and otherwise disabling abnormalities. Others with a professional interest in the spine include those seeking a more basic understanding of its structure and function, both normal and abnormal, and of its tolerance to adverse environments and its susceptibility to damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boshuizen HC, Bongers PM, Hulshof CTJ (1992) Self-reported back pain in forklift truck and freight-container tractor drivers exposed to whole-body vibration. Spine 17 (1): 59–65

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien JP (1983) The role of fusion for chronic low back pain. Orthop Clin North Am 14 (3): 639

    PubMed  Google Scholar 

  3. Bogduk N, Macintosh JE, Pearcy MJ (to be published) A universal model of the lumbar back muscles in the upright position. Spine

    Google Scholar 

  4. Bogduk N, Twomey LT (1987) Clinical anatomy of the lumbar spine. Churchill Livingstone, New York

    Google Scholar 

  5. Tesh K, Shaw-Dunn J, Evans JH (1987) The abdominal muscles and spinal stability. Spine 12 (5): 501–508

    Article  PubMed  CAS  Google Scholar 

  6. Siereg A, Arvikar RJ (1975) A comprehensive musculoskeletal model of the human vertebral column. Advances in Bioengineering. In: Proceedings of the Winter Annual Meeting of Bioengineering Divsion of ASME, Houston, Texas. American Society of Mechanical Engineers, pp 74–75 (Advances in Bioengineering Series)

    Google Scholar 

  7. Yettram AL, Jackman MJ (1980) Equilibrium analysis for the forces in the human spinal column and its musculature. Spine 5: 402–411

    Article  PubMed  CAS  Google Scholar 

  8. Adams MA, Hutton WC, Stott JRR (1980) The resistance to flexion of the lumbar intervertebral joint. Spine 5 (3): 245–253

    Article  PubMed  CAS  Google Scholar 

  9. Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading, J Bone Joint Surg [Am] 60-A(1): 41–55

    Google Scholar 

  10. Johnstone B, Urban JPG, Roberts S, Menage J (1992) The fluid content of the intervertebral disc. Spine 17 (4): 412–416

    Article  PubMed  CAS  Google Scholar 

  11. Crispo JJ, Panjabi MM (1992) Euler stability of the human ligamentous lumbar spine. Part 1: Theory. Clin Biomech 7: 19–26

    Google Scholar 

  12. Crispo JJ, Panjabi MM, Yamamoto I, Oxland TR (1992) Euler stability of the human ligamentous lumbar spine. Part 2: Experiment. Clin Biomech 7: 27–32

    Google Scholar 

  13. Adams MA, Hutton WC (1983) The mechanical function of the lumbar apophyseal joints. Spine 8 (3): 327–330

    Article  PubMed  CAS  Google Scholar 

  14. Gracovetsky S, Farfan HF, Lamy C (1981) The mechanisms of the lumbar spine. Spine 6: 249–262

    Article  PubMed  CAS  Google Scholar 

  15. Holm S, Maroudas A, Urban JPG, Selstam G, Nachemson AL (1981) Nutrition of the intervertebral disc: Solute transport and metabolism. Connect Tissue Res 8: 101–119

    Google Scholar 

  16. Holm S, Nachemson AL (1981) Nutritional changes in the canine intervertebral disc after spinal fusion. Clin Orthop 169: 243–258

    Google Scholar 

  17. Holm S, Nachemson AL (1983) Variations in the nutrition of the canine intervertebral disc induced by motion. Spine 8: 866–874

    Article  PubMed  CAS  Google Scholar 

  18. Panagiotacopulos ND, Pope MH, Bloch R, Krag MH (1987) Water content in human intervertebral discs: Part 2. Viscoelastic Behaviour. Spine 12 (9): 918–924

    Article  PubMed  CAS  Google Scholar 

  19. Urban JPG, Holm S, Maroudas A, Nachemson AL (1982) Nutrition of the intevertebral disc. Effect of fluid flow on solute transport. Clin Orthop 170: 296–302

    Google Scholar 

  20. McGill SM, Brown S (1992) Creep response of the lumbar spine to prolonged full flexion. Clin Biomech 7: 43–46

    Article  Google Scholar 

  21. Fast A (1988) Low back disorders: Conservative management. Arch Phys Med Rehab 69: 880–891

    CAS  Google Scholar 

  22. Macintosh JE, Bogduk N (1991) Attachments of the lumbar erector spinae. Spine 16 (7): 787–792

    Article  Google Scholar 

  23. Macintosh JE, Bodgduk N (1987) The morphology of the lumbar erector spinae. Spine 12: 658–668

    Article  PubMed  CAS  Google Scholar 

  24. Evans JH (1985) Biomechanics of lumbar fusion. Clin Orthop Rel Res 193: 38–46

    Google Scholar 

  25. Chow DHK, Luk KDK, Leong JCY, Evans JH (1992) Segmental mobility of the lumbar spine after fusion — a radiological and a biomechanical study. In: Chan FHY, Chan KL, Mak AFT’, Schindler F (eds) Proceedings of the Biomedical Engineering Symposium. Hong Kong Institution of Engineers, Hong Kong, pp 21–24

    Google Scholar 

  26. Farfan HF, Kirkaldy-Willis WH (1981) The present status of spinal fusion in the treatment of lumbar intervertebral joint disorders. Clin Orthop 158: 198

    PubMed  Google Scholar 

  27. Frymoyer JW, Selby DK (1985) Segmental instability: Rationale for treatment. Spine 10: 280–286

    Google Scholar 

  28. Pope MH (1987) The biomechanical basis for early care programmes. Ergonomics 30: 351–358

    Article  PubMed  CAS  Google Scholar 

  29. Thomas I, Evans JH (1988) Acoustic emission from vertebral bodies. J Mat Sci Letters 7: 267

    Article  Google Scholar 

  30. Hansson T, Roos B (1981) The relation between bone mineral content, experimental compression fractures and disc degeneration in lumbar vertebrae. Spine 6: 147

    Article  PubMed  CAS  Google Scholar 

  31. Hansson T, Roos B (1981) Microcalluses of the trabeculae in lumbar vertebrae and their relation to the bone mineral content. Spine 6: 375

    Article  PubMed  CAS  Google Scholar 

  32. Bergmark A (1987) Mechanical stability of the human lumbar spine. Doctoral dissertation, Lund Institute of Technology, Department of Solid Mechanics, Lund, Sweden

    Google Scholar 

  33. Crispo JJ (1989) The biomechanical stability of the human lumbar spine: Experimental and theoretical investigations. Doctoral dissertation, Yale University, New Haven, Connecticut

    Google Scholar 

  34. Kirkaldy-Willis WH, Farfan HF (1982) Instability of the lumbar spine. Clin Orthop 165: 110–123

    PubMed  Google Scholar 

  35. Nachemson A (1985) Lumbar spine instability: A critical update and symposium summary. Spine 10: 290–291

    Article  PubMed  CAS  Google Scholar 

  36. Posner I, White AA, Edwards WT, Hayes WC (1982) A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7: 374

    Article  PubMed  CAS  Google Scholar 

  37. Bohlman HH (1985) Treatment of fractures and dislocations of the thoracic and lumbar spine. Current concept review. J Bone Joint Surg [Am] 67 (1): 165–169

    CAS  Google Scholar 

  38. Lin PM (1982) Introduction of PLIF, biomechanical principles, and indications. In: Lin PM (ed) Posterior lumbar interbody fusion. Charles C Thomas, Springfield, IL, pp 3–57

    Google Scholar 

  39. Selby DK (1983) When to operate and what to operate upon. Orthop Clin N Am 14 (3): 577–587

    CAS  Google Scholar 

  40. Wetzel FT, La Rocca H (1991) The failed posterior lumbar interbody fusion. Spine 16 (7): 839–845

    Article  PubMed  CAS  Google Scholar 

  41. Spengler DM, Freeman C, Westbrook R, Miller J (1980) Low back pain following lumbar spine procedures. Failure of initial selection? Spine 5: 356

    Article  PubMed  CAS  Google Scholar 

  42. Pearcy MJ, Evans JH, O’Brien JP (1983) The load bearing capacity of vertebral cancellous bone in interbody fusion of the lumbar spine. Eng Med 183–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Evans, J.H. (1992). Clinical Biomechanics of the Spine. In: Niwa, S., Perren, S.M., Hattori, T. (eds) Biomechanics in Orthopedics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68216-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68216-5_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68218-9

  • Online ISBN: 978-4-431-68216-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics