Skip to main content

Summary

The octocorals are colonial cnidarians, many of which contain calcareous spicules in the mesoglea and, in some species, in the axis as well. The octocorals are excellent organisms for probing the mechanisms of biomineralization and demineralization, and the processes of calcification of spicules have been investigated extensively in recent years, especially in Leptogorgia virgulata. In this review, octocoral spicule formation is discussed relative to (1) the characteristics of scleroblasts, the spicule-forming cells, (2) calcium transport by the colonies, (3) rate of calcification, (4) role of carbonic anhydrase, (5) hormonal control of calcification, and (6) organic matrices and their possible functions in spicule formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayer FM, Harding BO (1968) The free-living lower invertebrates. Macmillan, London, pp 229

    Google Scholar 

  2. Vinogradov AP (1953) The elementary chemical composition of marine organisms. Mem Sears Fdn mar Res No. 2, New Haven, pp 647

    Google Scholar 

  3. Velimerov B, Bohm EL (1976) Calcium and magnesium carbonate concentrations in different growth regions of gorgonians. Mar Biol 35: 269–275

    Article  Google Scholar 

  4. Kingsley RJ, Watabe N (1982) Ultrastructural investigation of spicule formation in the gorgonian Leptogorgia virgulata(Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Res 223: 325–334

    Article  PubMed  Google Scholar 

  5. Dunkelberger DG, Watabe N (1974) An ultrastructural study on spicule formation in the Pennatulid colony Renilla reniformis. Tissue Cell 6: 573–586

    Article  PubMed  Google Scholar 

  6. Goldberg WM, Benyahu Y (1987) Spicule formation in the gorgonian coral Pseudoplexaura flagellosa1. Demonstration of intracellular and extracellular growth and the effect of Ruthenium red during decalcification. Bull Mar Sci 40: 287–303

    Google Scholar 

  7. Goldberg WM (1988) Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Relationship to Alcian blue staining and calcium binding. Histochemistry 89: 163–170

    Article  PubMed  Google Scholar 

  8. Kingsley RJ, Bernhardt AM, Wilbur KM, Watabe N (1987) Scleroblast cultures from the gorgonian Leptogorgia virgulata(Lamarck) (Coelenterata: Gorgonacea). In Vitro Cell Dev Biol 23: 297–302

    Google Scholar 

  9. Kingsley RJ, Tsuzaki M, Watabe N, Mechanic GL (1990) Collagen in spicule organic matrix of the gorgonian Leptogorgia virgulata. Biol Bull 179: 207–213

    Article  PubMed  Google Scholar 

  10. Chia FS, Crawford B (1977) Comparative fine structural studies of planulae and primary polyp of identical age of the sea pen, Ptilosarcus gurneyi. J Morphol 151: 131–158

    Article  Google Scholar 

  11. Ledger PW, Franc S (1978) Calcification of the collagenous axial skeleton of Veretillum cynomoriumPall. (Cnidaria: Pennatulacea). Cell Tissue Res 192: 249–266

    Article  PubMed  Google Scholar 

  12. Kingsley RJ, Watabe N (1984) Calcium uptake in the gorgonian Leptogorgia virgulata. The effects of ATPase inhibitors. Comp Biochem Physiol [A] 79: 487–491

    Article  Google Scholar 

  13. Kingsley RJ, Watabe N (1985) An autoradiographic study of calcium transport in spicule formation in the gorgonian Leptogorgia virgulata(Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Res 239: 305–310

    Article  Google Scholar 

  14. Kingsley RJ, Watabe N (1985) Ca-ATPase localization and inhibition in the gorgonian Leptogorgia virgulata(Lamarck) (Coelenterata: Gorgonacea). J Exp Mar Biol Ecol 93: 157–167

    Article  Google Scholar 

  15. Velimirov B, King J (1979) Calcium uptake and net calcification rate in the octocoral Eunicella papillosa. Mar Biol 50: 349–358

    Article  Google Scholar 

  16. Barnes DJ, Crossland CJ (1972) Coral calcification: Sources of error in radioisotope techniques. Mar Biol 42: 119–129

    Article  Google Scholar 

  17. Kingsley RJ, Watabe N (1989) The dynamics of spicule calcification in whole colonies of the gorgonian Leptogorgia virgulata(Lamarck) (Coelenterata: Gorgonacea). J Exp Mar Biol Ecol 133: 57–65

    Article  Google Scholar 

  18. Goreau TF (1961) On the relation of calcification to primary productivity in reef-building organisms. In: Lenhoff HM, Loomis WF (eds) The biology of Hydra. University of Miami Press, Miami, pp 269–285

    Google Scholar 

  19. Kingsley RJ, Watabe N (1987) Role of carbonic anhydrase in calcification in the gorgonian Leptogorgia virgulata. J Exp Zool 241: 171–180

    Article  Google Scholar 

  20. Graham D, Smillie RM (1976) Carbonate dehydratase in marine organisms of the Great Barrier Reef. Aust J Plant Physiol 3: 113–119

    Article  Google Scholar 

  21. Sikes CS, Wheeler AP (1982) Carbonic anhydrase and carbon fixation in coccolithophorids. J Phycol 18: 423–426

    Article  Google Scholar 

  22. Jones WC, Ledger PW (1986) The effect of diamox and various concentrations of calcium on spicule secretion in the calcareous sponge Sycon ciliatum. Comp Biochem Physiol [A] 84: 149–158

    Article  Google Scholar 

  23. Gorbman AM, Clements M, O’Brien R (1959) Utilization of radioiodine by invertebrates, with special study of several annelida and mollusca. J Exp Zool 127: 75–89

    Article  Google Scholar 

  24. Spangenberg DB (1984) Effects of exogenous thyroxine on statolith synthesis and resorption in Aurelia. Am Zool 24: 917–924

    Google Scholar 

  25. Kingsley RJ, Watabe N (1983) Analysis of proteinaceous components of the organic matrices of spicules from the gorgonian Leptogorgia virgulata. Comp Biochem Physiol [B] 76: 443–447

    Article  Google Scholar 

  26. Fox DL, Smith VE, Grigg RW, MacLeod WD (1969) Some structural and chemical studies of the microspicules in the fan-coral Eugorgia amplaVerrill. Comp Biochem Physiol 28: 1103–1114

    Article  Google Scholar 

  27. Silberberg MS, Ciereszko LS, Jacobson RA, Smith EC (1972) Evidence for a collagen-like protein within spicules of coelenterates. Comp Biochem Physiol [B] 43: 323–332

    Article  Google Scholar 

  28. Samata T, Kingsley RJ, Watabe N (1989) Ca-binding glycoprotein from the spicules of the octocoral Leptogorgia virgulata. Comp Biochem Physiol [B] 94: 651–654

    Article  Google Scholar 

  29. Watabe N, Oishi M, Kingsley RJ (1991) The organic matrix of spicules of the gorgonian Leptogorgia virgulata. In: Suga S, Nakahara H (eds) Mechanisms and phylogeny of mineralization in biological systems. Springer, Tokyo, pp 9–16

    Google Scholar 

  30. Shapeero W (1969) A positive chitosan test for spicules in the Anthozoan order, Pennatulacea. Pacif Sci 23: 261–263

    Google Scholar 

  31. Kingsley RJ, Watabe N (1984) Synthesis and transport of the organic matrix of the spicules of the gorgonian Leptogorgia virgulata(Lamarck) (Coelenterata: Gorgonacea) An autoradiographie investigation. Cell Tissue Res 235: 533–538

    Article  PubMed  Google Scholar 

  32. Gaton DD, Gaton E, Wolman M (1987) Are the effects of thyroid hormone on target organs mediated through lysosomal enzymes? Cell Mol Biol 33: 619–624

    PubMed  Google Scholar 

  33. Watabe N, Berhnardt AM, Kingsley RJ, Wilbur KM (1986) Recalcification of decalcified spicule matrices of the gorgonian Leptogorgia virgulata(Cnidaria: Anthozoa). Trans Am Microsc Soc 105: 311–318

    Article  Google Scholar 

  34. Crenshaw MA (1990) Mineral induction by immobilized polyanions. In: Suga S, Nakahara H (eds) Mechanisms and phylogeny of mineralization in biological systems. Springer, Tokyo, pp 101–105

    Google Scholar 

  35. Gunthorpe ME, Sikes CS, Wheeler AP (1990) Promotion and inhibition of calcium carbonate crystallization in vitro by matrix protein from blue crab exoskeleton. Biol Bull 179: 191–200

    Article  Google Scholar 

  36. Watabe N, Kingsley RJ (1990) Extra-, inter-, and intracellular mineralization in invertebrates and algae. In: Crick RE (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum, New York, pp 209–223

    Google Scholar 

  37. Norwack H, Nordwig A (1974) Sea-anemone collagen: Isolation and characterization of the cyanogen-bromide peptides. Eur J Biochem 45: 333–342

    Article  Google Scholar 

  38. Herring GM (1972) The organic matrix of bone. In: Bourne GH (ed) The biochemistry and physiology of bone structure, vol 1. Academic, New York, pp 127–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Watabe, N., Kingsley, R.J. (1992). Calcification in Octocorals. In: Suga, S., Watabe, N. (eds) Hard Tissue Mineralization and Demineralization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68183-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68183-0_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68185-4

  • Online ISBN: 978-4-431-68183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics