Skip to main content

Summary

The present work was aimed at elucidating the mechanism of enamel mineralization during porcine amelogenesis by specifically investigating (1) the driving force for precipitation in the fluid microenvironment from which enamel crystals form, (2) changes in the property of matrix proteins, particularly the amelogenins, originating from their post-secretory degradation, and (3) regulatory mechanisms of crystal growth related to the interaction between these proteins and enamel mineral. Analyses of ionic concentrations (and activities) of the fluid separated from secretory porcine enamel indicated that enamel mineralization during the secretory stage of porcine amelogenesis occurs in a specific microenvironment segregated from the circulating blood. It was also suggested that the driving force for precipitation at this stage is controlled by the cellular transport of lattice ions (particularly Ca ions) and the presence of Ca-binding ligands (regulating calcium ion activity) in the fluid. Our in vitro work also showed that the originally secreted porcine amelogenin (25 kd by SDS-PAGE), as well as 60–90 and 32 kd non-amelogenins, can adsorb selectively onto apatitic surfaces. Importantly, this adsorption of amelogenin is intimately related to the inhibitory activity of crystal growth of hydroxyapatite in supersaturated solutions and regulation of isotopic exchange of ions (e.g., calcium) on the crystal surfaces in saturated conditions. This potential function of amelogenins in situ seems to be modulated by enzymatic cleavages of specific segments at the N- and C-termini.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suga S (1983) Comparative histology of progressive mineralization pattern of developing enamel. In: Suga S (ed) Mechanisms of tooth enamel formation. Quintessence, Tokyo, pp 167–203

    Google Scholar 

  2. Robinson C, Fuchs P, Deutsch D, Weatherell JA (1978) Four chemically distinct stages in developing enamel from bovine incisor teeth. Caries Res 12: 1–11

    Article  PubMed  Google Scholar 

  3. Warshawsky H (1984) Ultrastructural studies on amelogenesis. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Birmingham, Ala, pp 33–45

    Google Scholar 

  4. Takano Y, Hanawa M, Yamamoto T, Domon T, Fujinami H, Hanaizumi Y, Wakita M (1990) Time-related changes in the distribution of 45Ca in the developing enamel of rat incisors as revealed by radioautography. J Biol Buccale 18: 135–147

    PubMed  Google Scholar 

  5. Bawden JW, Merriff DH, Deaton TG (1981) In vitro study of calcium-45 and phosphorus-32 uptake in developing rat molar enamel using quantitative methods. Arch Oral Biol 26: 477–482

    Article  PubMed  Google Scholar 

  6. Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MV (1980) Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J Biol Chem 255: 9760–9768

    PubMed  Google Scholar 

  7. Fincham AG, Belcourt AB, Lyaruu DM, Termine JD (1982) Comparative protein biochemistry of developing dental enamel matrix from five mammalian species. Calcif Tissue Int 34: 182–189

    Article  PubMed  Google Scholar 

  8. Shimizu M and Fukae M (1983) Enamel Proteins. In: Suga S (ed) Mechanisms of tooth enamel formation. Quintessence, Tokyo, pp 125–141

    Google Scholar 

  9. Shimokawa H, Sobel ME, Sasaki S, Termine JD, Young MF (1987) Heterogeneity of amelogenin mRNA in the bovine tooth germ. J Biol Chem 262: 4042–4047

    PubMed  Google Scholar 

  10. Limeback H, Sakarya H, Chu W, Mackinnon M (1989) Serum albumin and its acid hydrolysis peptites dominate preparations mineral-bound enamel proteins. J Bone Mineral Res 4: 235–241

    Article  Google Scholar 

  11. Shimokawa H, Tamura M, Ibaraki K, Sasaki S (1989) Human amelogenin gene. In: Fearnhead RW (ed) Tooth enamel V. Florence, Yokohama, pp 301–305

    Google Scholar 

  12. Snead ML, Lau EC, Zeichner-David M, Fincham AG, Woo SLC, Slavkin HC (1985) DNA sequence for cloned cDNA murine amelogenin reveals the amino acid sequence for enamel-specific protein, Biochem Biophys Res Commun 129: 812–818

    Article  PubMed  Google Scholar 

  13. Yamakoshi Y, Tanabe T, Fukae M, Shimizu M (1989) Amino acid sequence of porcine 25 kDa amelogenin. In: Fearnhead RW (ed) Tooth enamel V. Florence, Yokohama, pp 314–318

    Google Scholar 

  14. Weiner S (1986) Organization of extracellularly mineralized tissues: A comparative study of biological crystal growth. CRC Crit Rev Biochem 20: 365–408

    Article  PubMed  Google Scholar 

  15. Linde A, Lussi A, Crenshaw MA (1989) Mineral induction by immobilized poly-anionic proteins. Calcif Tissue Int 44: 286–295

    Article  PubMed  Google Scholar 

  16. Herold R, Rosenbloom J, Granovsky M (1989) Phylogenetic distribution of enamel proteins: Immunohistochemical localization with monoclonal antibodies indicates the evolutionary appearance of enamelins prior to amelogenins. Calcif Tissue Int 45: 88–94

    Article  PubMed  Google Scholar 

  17. Slavkin HC, Bessem C, Bringas P Jr, Zeichner-David M, Nanci A, Snead ML (1988) Sequential expression and differential function of multiple enamel proteins during fetal, neonatal, and early postnatal stages of mouse molar organogenesis. Differentiation 37: 26–39

    Article  PubMed  Google Scholar 

  18. Aoba T, Tanabe T, Moreno EC (1987) Function of amelogenins in porcine enamel mineralization during the secretory stage of amelogenesis. Adv Dent Res 1: 252–260

    PubMed  Google Scholar 

  19. Aoba T, Moreno EC (1987) The enamel fluid in the early secretory stage of porcine amelogenesis: Chemical composition and saturation with respect to enamel mineral. Calcif Tissue Int 41: 86–94

    Article  PubMed  Google Scholar 

  20. Aoba T, Fukae M, Tanabe T, Shimizu M, Moreno EC (1987) Selective adsorption of porcine amelogenins onto hydroxyapatite and their inhibitory activity on seeded crystal growth of hydroxyapatite. Calcif Tissue Int 41: 281–289

    Article  PubMed  Google Scholar 

  21. Aoba T, Moreno EC, Kresak M, Tanabe T (1989) Possible roles of partial sequences at N- and C-termini of amelogenin in protein-enamel mineral interaction. J Dent Res 68: 1331–1336

    Article  PubMed  Google Scholar 

  22. Aoba T, Moreno EC (1989) Mechanism of amelogenetic mineralization in minipig secretory enamel. In: Fearnhead RW (ed) Tooth enamel V. Florence, Yokohama, pp 163–167

    Google Scholar 

  23. Aoba T, Moreno EC (1992) Changes in the solubility of enamel mineral at various stages of porcine amelogenesis. Calcif Tissue Int 50: 266–272

    Article  PubMed  Google Scholar 

  24. Moreno EC, Aoba T (1987) Calcium binding in enamel fluid and driving force for enamel mineralization in the secretory stage of amelogenesis. Adv Dent Res 1: 245–251

    PubMed  Google Scholar 

  25. Drinkard C, Gibson L, Crenshaw MA, Bawden JW (1981) Calcium binding by organic matrix of developing bovine enamel. Arch Oral Biol 26: 483–485

    Article  PubMed  Google Scholar 

  26. Nelson DGA, Barry JC, Shields CP, Glena R, Featherstone JDB (1989) Crystal morphology, composition, and dissolution behavior of carbonated apatites prepared at controlled pH and temperature. J Colloid Interface Sci 130: 467–479

    Article  Google Scholar 

  27. Shimoda S, Aoba T, Moreno EC, Miake Y (1990) Effect of solution composition on morphological and structural features of carbonated calcium apatites. J Dent Res 69: 1731–1740

    Article  PubMed  Google Scholar 

  28. Fukae M, Tanabe T (1987) Nonamelogenin components of porcine enamel in the protein fraction free from the enamel crystals. Calcif Tissue Int 40: 286–293

    Article  PubMed  Google Scholar 

  29. Tanabe T, Aoba T, Moreno EC, Fukae M, Shimizu M (1990) Properties of phosphorylated 32 kD nonamelogenin proteins isolated from porcine secretory enamel. Calcif Tissue Int 46: 205–215

    Article  PubMed  Google Scholar 

  30. Aoba T, Shimoda S, Akita H, Holmberg C, Taubman MA (1992) Anti-peptide antibodies reactive with epitopic domains of porcine amelogenins at the C-terminus. Arch Oral Biol 37: 249–255

    Article  PubMed  Google Scholar 

  31. Aoba T, Kawano K, Moreno EC (1990) Molecular conformation of porcine amelogenins and its significance in protein-mineral interaction: 1H-NMR photo CIDNP study. J Biol Buccale 18: 189–194

    PubMed  Google Scholar 

  32. Tanabe T, Aoba T, Moreno EC (1988) Effect of fluoride in the apatitic lattice on adsorption of enamel proteins onto calcium apatites. J Dent Res 67: 536–542

    Article  PubMed  Google Scholar 

  33. Aoba T, Collins J, Moreno EC (1989) Possible function of matrix proteins in fluoride’ incorporation into enamel mineral during porcine amelogenesis. J Dent Res 68: 1162–1168

    Article  PubMed  Google Scholar 

  34. Aoba T, Moreno EC (1991) Structural relationship of amelogenin proteins to their regulatory function of enamel mineralization. In: Surface reactive peptides and polymers. American Chemical Society, Washington DC, pp 85–106

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Aoba, T. (1992). Enamel Formation During Porcine Amelogenesis. In: Suga, S., Watabe, N. (eds) Hard Tissue Mineralization and Demineralization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68183-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68183-0_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68185-4

  • Online ISBN: 978-4-431-68183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics