Molecular biology of hepatitis B virus and hepatocellular carcinoma

  • Shinako Takada
  • Katsuyuki Yaginuma
  • Masayuki Arii
  • Ikuo Nakamura
  • Yumiko Shirakata
  • Midori Kobayashi
  • Katsuro Koike


Hepatitis B virus (HBV) is a causative agent of acute and chronic hepatitis in humans, and its chronic infection is closely related to the development of hepatocellular carcinoma (HCC) [1, 2]. Chronic hepatitis is considered to be a premalignant stage of HCC, since HCC frequently developes via chronic hepatitis; woodchuck carriers experimentally infected by woodchuck hepatitis virus (WHV) developed HCC in all cases [3]. The HBV genome possesses four open reading frames (ORF) for the expression of pregenome RNA, C/e antigen, polymerase, preS/S antigen, and X protein [4], as shown in Fig. 1. Southern blot analyses by us and other investigators [4–7] demonstrated HBV DNA integration in some chronic and acute hepatitis tissues. For clarification of the early stage of tumor development, integrated forms of HBV DNA in chronic hepatitis were extensively studied by molecular cloning to provide an indication of their structural features. HBV DNA integration was found in most chronic hepatitis samples and rearrangement of viral DNA and/or cellular flanking DNA was also apparent [8, 9]. Moreover, some data suggest viral DNA rearrangement possibly occurs prior to integration in the chronically-infected liver [10–12].


Chloramphenicol Acetyl Transferase Woodchuck Hepatitis Virus Chloramphenicol Acetyl Transferase Activity Mouse NIH3T3 Cell Chloramphenicol Acetyl Transferase Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szmuness W (1978) Hepatocellular carcinoma and the hepatitis B virus: Evidence for causal association. Prog Med Virol 24: 40–69PubMedGoogle Scholar
  2. 2.
    Beasley RP, Hwang LY, Lin CC, Chien CS (1981) Hepatocellular carcinoma and hepatitis B virus. Lancet 11: 1129–1133CrossRefGoogle Scholar
  3. 3.
    Popper H, Roth L, Purcell RH, Tennant BC, Gerin JL (1987) Hepatocarcinogenicity of the woodchuck hepatitis virus. Proc Natl Acad Sci USA 84: 866–870PubMedCrossRefGoogle Scholar
  4. 4.
    Brechot C, Hadchonuel M, Scotto J, Degos F, Charnay P, Trepo C, Tiollais P (1981) Detection of hepatitis B virus DNA in liver and serum: A direct appraisal of the chronic carrier state. Lancet II: 765–767PubMedCrossRefGoogle Scholar
  5. 5.
    Brechot C, Hadchouel M, Scotto J, Fonck M, Potet F, Vyas GN, Tiollais P (1981) State of hepatitis virus DNA in hepatocyte of patients with hepatitis B surface antigen-positive and —negative liver diseases. Proc Natl Acad Sci USA 78: 3906–3910PubMedCrossRefGoogle Scholar
  6. 6.
    Shafritz DA, Shouval D, Shermann HI, Hadziyannis SJ, Kew MC (1981) Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. N Engl J Med 305: 1067–1073PubMedCrossRefGoogle Scholar
  7. 7.
    Yaginuma K, Kobayashi H, Kobayashi M, Morishima T, Matsuyama K, Koike K (1987) Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis from children. J Virol 61: 1808–1813PubMedGoogle Scholar
  8. 8.
    Koike K, Kobayashi M, Yaginuma K, Shirakata Y (1987) Structure and function of integrated HBV DNA. In: Robinson WS, Koike K, Will H (eds) Hepadna Viruses Alan R Liss, New York, pp 267–286Google Scholar
  9. 9.
    Takada S, Gotoh Y, Hayashi S, Yoshida M, Koike K (1990) Structural rearrangement of integrated hepatitis B virus DNA as well as cellular flanking DNA is present in chronically infected hepatic tissues. J Virol 64: 822–828PubMedGoogle Scholar
  10. 10.
    Marion P, Robinson WS, Rogler CE, Summers J (1982) High molecular weight GSHV-specific DNA in chronically-infected ground squirrel liver. J Cell Biochem Suppl 6: 203Google Scholar
  11. 11.
    Rogler CE, Summers J (1982) Novel form of woodchuck hepatitis virus DNA isolated from chronically infected woodchuck liver nuclei. J Virol 44: 852–863PubMedGoogle Scholar
  12. 12.
    Rogler CE, Summers J (1984) Cloning and structural analysis of integrated woodchuck hepatitis virus sequences from a chronically infected liver. J Virol 50: 832–837PubMedGoogle Scholar
  13. 13.
    Tiollais P, Pourcell C, Dejean A (1985) The hepatitis B virus. Nature 317: 489–495PubMedCrossRefGoogle Scholar
  14. 14.
    Dejian A, Sonigo P, Wain-Hobson S, Tiollais P (1984) Specific hepatitis B virus integration in hepatocellular carcinoma DNA through a viral 11-base-pair direct repeat. Proc Natl Acad Sci USA 81: 5350–5354CrossRefGoogle Scholar
  15. 15.
    Koch S, Freytag von Loringhoven A, Kahmann R, Hofschneider PH, Koshy R (1984) The genetic organization of integrated hepatitis B virus DNA in the human hepatoma cell line PLC/PRF/5. Nucleic Acids Res 11: 5391–5402Google Scholar
  16. 16.
    Koshy R, Koch S, Freytag von Loringhoven A, Kahmann R, Murray K, Hofschneider PH (1983) Integration of hepatitis B virus DNA: Evidence for integration in the single-stranded gap. Cell 34: 215–223PubMedCrossRefGoogle Scholar
  17. 17.
    Mizusawa H, Taira M, Yaginuma K, Kobayashi M, Yoshida E, Koike K (1985) Inversely repeating integrated hepatitis B virus DNA and cellular flanking sequences in the human hepatoma-derived cell line huSP. Proc Natl Acad Sci USA 82: 208–212PubMedCrossRefGoogle Scholar
  18. 18.
    Nagaya T, Nakamura T, Tokino T, Tsurimoto T, Imai M, Mayumi T, Kamino K, Yamamura K, Matsubara K (1987) The mode of hepatitis virus DNA integration in chromosome of human hepatocellular carcinoma. Genes Dev 1: 773–782PubMedCrossRefGoogle Scholar
  19. 19.
    Rogler CE, Shermann M, Su CY, Shalfitz DA, Summers J, Show TB, Henderson A, Kew M (1985) Deletion in chromosome lip associated with a hepatitis B integration site in hepatocellular carcinoma. Science 230: 319–322PubMedCrossRefGoogle Scholar
  20. 20.
    Tokino T, Fukushige S, Nakamura T, Nagaya T, Murotsu T, Shiga K, Aoki N, Matsubara K (1987) Chromosomal translocation and inverted duplication associated with integrated hepatitis B virus in hepatocellular carcinomas. J Virol 61: 1808–1813Google Scholar
  21. 21.
    Yaginuma K, Kobayashi M, Yoshida E, Koike K (1985) Hepatitis virus integration in hepatocellular carcinoma DNA: Duplication of cellular flanking sequences at the integration site. Proc Natl Acad Sei USA 82: 4458–4462CrossRefGoogle Scholar
  22. 22.
    Ziemer M, Garcia P, Shaul Y, Rutter WJ (1985) Sequence of hepatitis B virus DNA incorporated into the genome of a human hepatoma cell line. J Virol 53: 885–892PubMedGoogle Scholar
  23. 23.
    Spandau DF, Lee CH, (1988) Trans-activation of viral enhancers by the hepatitis B virus X protein. J Virol 62: 427–434PubMedGoogle Scholar
  24. 24.
    Seto E, Benedict Yen TS, Matija Perterlin B, Ou J-H (1988) Trans-activation of the human immunodeficiency virus long terminal repeat by the hepatitis B virus X protein. Proc Natl Acad Sei USA 85: 8286–8290CrossRefGoogle Scholar
  25. 25.
    Moriarty AM, Alexander H, Lerner RA, Thornton GB (1985) Antibodies to peptides detect with new-hepatitis B antigens: Serological correlation with hepatocellular carcinoma. Science 227: 429–433PubMedCrossRefGoogle Scholar
  26. 26.
    Kay A, Madart E, Trepo C, Galibert F (1985) The HBV HBx gene expressed in E.coli is recognized by sera from hepatitis patients. EMBO J 4: 1287–1292PubMedGoogle Scholar
  27. 27.
    Meyers ML, Trepo LV, Nath N, Sninsky JJ (1986) Hepatitis B polypeptide X: Expression of Escherichia coli and identification of specific antibodies in sera from hepatitis B virus-infected humans. J Virol 57: 101–109PubMedGoogle Scholar
  28. 28.
    Shirakata Y, Kawada M, Fujiki Y, Sano H, Oda M, Yaginuma K, Kobayashi M, Koike K (1989) The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells. Jpn J Cancer Res 80: 617–621PubMedCrossRefGoogle Scholar
  29. 29.
    Yaginuma K, Shirakata Y, Kobayashi M, Koike K (1987) Hepatitis B virus ( HBV) particles are produced in a cell culture system by transient expression of transfected HBV DNA. Proc Natl Acad Sei USA 84: 2678–2682CrossRefGoogle Scholar
  30. 30.
    Cooper GM (1982) Science 218: 801–806CrossRefGoogle Scholar
  31. 31.
    Land H, Parada LF, Weinberg RA (1983) Science 222: 771–778PubMedCrossRefGoogle Scholar
  32. 32.
    Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc. Natl. Acad. Sei. USA 79: 4848–4852Google Scholar
  33. 33.
    Shimizu K, Goldfarb M, Suard Y, Perucho M, Li Y, Kamata T, Feramisco J, Stavnezer E, Fogh J, Wigler M (1983) Three human transforming genes are related to the viral ras oncogenes. Proc. Natl. Acad. Sei. USA 80: 2112–2116CrossRefGoogle Scholar
  34. 34.
    Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300: 143–149PubMedCrossRefGoogle Scholar
  35. 35.
    Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA (1983) Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303: 775–779PubMedCrossRefGoogle Scholar
  36. 36.
    Yuasa Y, Gol RA, Chang A, Chiu I-M, Reddy EP, Tronick SR, Aaronson SA (1984) Mechanism of activation of an N-ras oncogene of SW-1271 human lung carcinoma cells. Proc. Natl. Acad. Sei. USA 81: 3670–3674Google Scholar
  37. 37.
    Takada S, Koike K (1989) Activated N-ras gene was found in human hepatoma tissue but only in a small fraction of tumor cells. Oncogene 4: 189–193PubMedGoogle Scholar
  38. 38.
    Koike K, Takada S, Iwami M, Yaginuma K, Kobayashi M (1986) Characterization of a transforming gene in human hepatoma cells containing integrated hepatitis B virus DNA. In: Oda T, Okuda K (eds.) New trends in hepatology. Medical Tosho, Tokyo, pp 150–164Google Scholar
  39. 39.
    Takada S, Iwami M, Kobayashi M, Koike K (1991) An oncogene obtained from human hepatocellular carcinoma was identified as the dbl Oncogene (Abstract). In: 2nd Meeting on The Molecular Basis of Human Cancer, Frederic, Md, USA, p 26Google Scholar
  40. 40.
    Hsu TY, Morony T, Etiemble J, Jouise A, Trepo C, Tiollais P, Buendia MA (1988) Activation of c-myc by woodchuck hepatitis virus insertion in hepatocellular carcinoma. Cell 55: 627–635PubMedCrossRefGoogle Scholar
  41. 41.
    Koike K, Shirakata Y, Yaginuma K, Arii M, Takada S, Nakamura I, Hayashi Y, Kawada M, Kobayashi M (1989) Oncogenic potential of hepatitis B virus. Mol Biol Med 6: 151–160PubMedGoogle Scholar
  42. 42.
    Molnar-Kimber KL, Summers JW, Mason WS (1984) Mapping of a cohesive overlap of duck hepatitis B virus DNA and of the site of initiation of reverse transcription. J Virol 51: 181–191PubMedGoogle Scholar
  43. 43.
    Miller RH, Robinson WS (1986) Common evolutionary origin of hepatitis B virus and retroviruses. Proc Natl Acad Sei USA 83: 2531–2535CrossRefGoogle Scholar
  44. 44.
    Takada S, Koike K (1990) Trans-activation function of a 3’-truncated gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues. Proc Natl Acad Sei USA 87: 5628–5632CrossRefGoogle Scholar
  45. 45.
    Wollsersheim M, Debelka U, Hofschneider PH, (1988) A trans-activating function encoded in the hepatitis B virus X gene is conserved in the integrated state. Oncogene 3: 545–552Google Scholar
  46. 46.
    Takada S, Koike K (1990) X protein of hepatitis B virus resembles a serine protease inhibitor. Jpn J Cancer Res 81: 1191–1194PubMedCrossRefGoogle Scholar
  47. 47.
    Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. A Rev Biochem 49: 593–626CrossRefGoogle Scholar
  48. 48.
    Wunderer G, Machleidt W, Frotz H (1981) The broad-specificity proteinase inhibitor 5 II from the sea anemone Anemonia sulcata. Methods Enzymol 80: 816–820CrossRefGoogle Scholar
  49. 49.
    Strydom DJ, Joubert FJ (1981) Amino-acid sequence of a weak trypsin inhibitor-B from Dendroaspis-polylepise (Black-mamba) Hoppe-Seyler’s Z Physiol Chem 362: 1377–1384PubMedGoogle Scholar
  50. 50.
    Mandart E, Kay A, Galibert F (1984) Nucleotide sequence of a cloned duck hepatitis B virus genome: Comparison with woodchuck and human hepatitis B virus sequences. J Virol 49: 782–792PubMedGoogle Scholar
  51. 51.
    Colgrove R, Simon G, Ganem D (1989) Transcriptional activation of homologous and heterologous genes by the hepatitis B virus X gene product in cells permissive for viral replication. J Virol 63: 4019–4020PubMedGoogle Scholar
  52. 52.
    Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, Palmiter RD (1989) Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59: 1145–1156PubMedCrossRefGoogle Scholar
  53. 53.
    Mckeehan WL, Sakagami Y, Hoshi H, Mckeehan KA, (1986) Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. J Biol Chem 261: 5378–5383PubMedGoogle Scholar
  54. 54.
    Gasson JC, Golde DW, Kaufman SE, Westbrook CA, Hewick RM, Kaufman RJ, Wong GG, Temple PA, Leary AC, Brown EL, Orr EC, Clark SC (1985) Molecular characterization and expression of the gene encoding human erythroidpotentiating activity. Nature 315: 768–771PubMedCrossRefGoogle Scholar
  55. 55.
    Edwards DR, Waterhouse P, Holman ML, Denhardt DT (1986) A growth-responsive gene (16C8) in normal mouse fibroblasts homologous to a human collagenase inhibitor with erythroidpotentiating activity: Evidence for inducible and constitutive transcripts. Nucleic Acid Res 14: 8863–8878PubMedCrossRefGoogle Scholar
  56. 56.
    Hohne M, Schaefer S, Seifer M, Feitelson MA, Paul D, Gerlich WH (1990) Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J 9: 1137–1145PubMedGoogle Scholar
  57. 57.
    Kobayashi M, Koike K (1984) Complete nucleotide sequence of hepatitis B virus DNA of subtype adr and its conserved gene organization. Gene 30: 227–232PubMedCrossRefGoogle Scholar
  58. 58.
    Kodama K, Ogasawara N, Yoshikawa H, Murakami S (1985) Nucleotide sequence of a cloned woodchuck hepatitis virus genome. J Virol 56: 978–986PubMedGoogle Scholar
  59. 59.
    Anderson S, Kingston IB (1983) Isolation of a genomic clone for bovine pancreatic trypsin inhibitor by using a unique-sequence synthetic DNA probe. Proc Natl Acad Sci USA 80: 6838–6842PubMedCrossRefGoogle Scholar
  60. 60.
    Kato I, Tominaga N (1979) Trypsin-subtilisin inhibitor from red sea turtle eggwhite consists of two tandem domains—one Kunitz—one of a new family. Fed Proc 38: 832Google Scholar
  61. 61.
    Kido H, Yokogoshi Y, Katunuma N (1988) Kunitztype protease inhibitor found in rat mast cells. J Biol Chem 263: 18104–18107PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1992

Authors and Affiliations

  • Shinako Takada
    • 1
  • Katsuyuki Yaginuma
    • 1
  • Masayuki Arii
    • 1
  • Ikuo Nakamura
    • 1
  • Yumiko Shirakata
    • 1
  • Midori Kobayashi
    • 1
  • Katsuro Koike
    • 1
  1. 1.Department of Gene ResearchCancer Institute JFCRKami-Ikebukuro, Toshima-ku, TokyoJapan

Personalised recommendations