Advertisement

Radiofrequency hyperthermia and radiotherapy for hepatocellular carcinoma

  • Yasushi Nagata
  • Mitsuyuki Abe
  • Masahiro Hiraoka
  • Shinitirou Masunaga
  • Keizo Akuta
  • Yasumasa Nishimura
  • Masaji Takahashi
  • Shiken Jo
  • Mototsugu Koishi

Abstract

Malignant liver tumors can be classified into three types: hepatocellular carcinoma (HCC), cholangiocarcinoma, and metastatic tumors. HCC can be further divided into three subtypes: massive, nodular, and diffuse. Most patients with liver tumors are not good candidates for surgical treatment and many chemotherapy regimens do not show good results in these patients. At Kyoto University Hospital, radiofrequency (RF) capacitive heating equipment has been used since 1979 for the treatment of deep-seated tumors [1, 2], and since 1983 we have applied it to liver tumors. Here we report the clinical results of thermotherapy for HCC.

Keywords

Liver Tumor Compute Tomography Number Metastatic Liver Tumor Malignant Liver Tumor Local Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiraoka M, Jo S, Dodo Y, Ono K, Takahashi M, Nishida H, Abe M (1984) Clinical results of radiofrequency hyperthermia combined with radiation in the treatment of radioresistant cancers. Cancer 54: 2898–2904PubMedCrossRefGoogle Scholar
  2. 2.
    Abe M, Hiraoka M, Takahashi M, et al. (1986) Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy: Cancer 58: 1589–1595PubMedGoogle Scholar
  3. 3.
    Nagata Y, Kumada K, Abe M, Ono K, Ozawa K, Hayashido M (1990) Continuous intra-arterial infusion therapy: An alternative approach to the femoral artery. Br J Surg 77: 584–585PubMedCrossRefGoogle Scholar
  4. 4.
    Nagata Y, Nishidai T, Abe M, Takahashi M, Okajima K, Yamaoka N, Ishihara H, Kubo Y, Ohta H, Kazusa C (1990) CT Simulator: A new 3-D planning and simulating system for radiotherapy: Part 2—Clinical Application. Int J Radiat OncolBiol Phys 18: 505–513PubMedCrossRefGoogle Scholar
  5. 5.
    Moffat, FL, Gilas T, Calhoun K, Falk M, Dalfen R, Rostein LE, Makowka L, Hound V, Laing D, Venturi D (1985) Further experience with regional radiofrequency hyperthermia and cytotoxic chemotherapy for unresectable hepatic neoplasia. Cancer 55: 1291PubMedCrossRefGoogle Scholar
  6. 6.
    Storm FK, Kaiser LR, Goodnight JE, Harrison WH, Elliot RS, Gomes AS, Morton DL (1982) Thermochemotherapy for melanoma metastases in liver. Cancer 49: 1243–1248PubMedCrossRefGoogle Scholar
  7. 7.
    Petrovich Z, Langholz B, Kapp DS, Emami B, Oleson JR, Luxton G, Astrahan M (1988) Deep Regional Hyperthermia of Liver. Am J Clin Oncol 12 (5): 378–383CrossRefGoogle Scholar
  8. 8.
    Chuang VP (1983) Hepatic tumor angiography: A subjective review Radiology 148: 633–639Google Scholar
  9. 9.
    Reuter SR, Redman HC, Siders DB, et al. (1970) The spectrum of angiographic finding in hepatoma Radiology 94: 89–94Google Scholar
  10. 10.
    Samulski TV, Fessenden P, Valdagni R, et al. (1987) Correlation of thermal washout rate, steady state temperatures, and tissue type in deep seated recurrent or metastatic tumors: Int J Radiat Oncol Biol Phys 13: 907–916PubMedGoogle Scholar
  11. 11.
    Waterman FM, Nerlinger RE, Moylan DJ, Leeper DB (1987) Response of human tumor blood flow to local hyperthermia: Int J Radiat Oncol Biol Phys 13: 75–82PubMedGoogle Scholar
  12. 12.
    Akuta K, Hiraoka M, Jo S, Ma F, Nishimura Y, Takahashi M, Abe M, Marmquist M, Lindbom LO, Lindbom R (1987) Regional hyperthermia combined with blockade of the hepatic arterial blood flow by degradable starch microsperes in pigs: Int J Radiat Oncol Biol Phys 13: 239–242Google Scholar
  13. 13.
    Erichsen C, Bolmsjo M, Hugander A, Jonsson PE (1985) Blockade of the hepatic artery blood flow by biodegradable microspheres (Spherex) combined with local hyperthermia in the treatment of experimental liver tumors in rats. Cancer Res Clin Oncol 109: 38–41CrossRefGoogle Scholar
  14. 14.
    Akuta K, Jo S, Hiraoka M, Nishimura M, Nagata Y, Takahashi M, Abe M (1988) Histological Changes of the normal liver by local hyperthermia. Part 2—Histopathological Changes of the Rabbit Liver by Local Hyperthermia. Jpn J Hyperther Oncol 4: 1–8Google Scholar
  15. 15.
    Fajardo LE, Colby TV (1980) Pathogenesis of Veno-occlusive liver disease after radiation. Arch Pathol Lab Med 104: 584–588PubMedGoogle Scholar
  16. 16.
    Order SE, Stillwagon GB, Klein JL, Leichner PK, Siegelman SS, Ettinger DS, Haulk T, Kopher K, Fishman EK (1985) Iodine-131 antiferritin, a new treatment modality in hepatoma: A radiation oncology group study. J Clin Oncol 3: 1573–1582PubMedGoogle Scholar
  17. 17.
    Kusumoto Sai S, Shirotani K, Nakada K, Hayashi K, Shoji T (1989) I-131—Lipiodol therapy: Kan Tan Sui. 18: 283–288Google Scholar
  18. 18.
    Nagata Y, Yamamoto K, Hiraoka M, Abe M, Takahashi M, Akuta K (1990) Monitoring liver tumor therapy with 18F-FDG Positron Emission Tomography. JCAT 14: 370–374Google Scholar
  19. 19.
    Nagata Y, Hiraoka M, Abe M, Akuta K, Takahashi M, Jo S (1990) Radiofrequency thermotherapy for malignant liver tumors. Cancer 65: 1730–1736PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1992

Authors and Affiliations

  • Yasushi Nagata
    • 1
  • Mitsuyuki Abe
    • 1
  • Masahiro Hiraoka
    • 1
  • Shinitirou Masunaga
    • 1
  • Keizo Akuta
    • 1
  • Yasumasa Nishimura
    • 1
  • Masaji Takahashi
    • 1
  • Shiken Jo
    • 1
  • Mototsugu Koishi
    • 1
  1. 1.Department of Radiology, Faculty of MedicineKyoto UniversityKyotoJapan

Personalised recommendations