Advertisement

Depth and Perversity

  • Lê Dũng Tráng
Conference paper

Abstract

In the seminar on Algebraic Geometry (SGA 2) concerning the theorems of Lefschetz type ([G]) A. Grothendieck showed that the notion of depth introduced for rings and modules could be understood through the vanishing of adequate cohomologies. The topological counterpart of this notion of depth in homotopy and rational cohomology are related to the classical theorem of Lefschetz on hyperplane sections. The analogy between topology and commutative algebra led A. Grothendieck to formulate several conjectures which appear to be true (see [H-L]).

Keywords

Homotopy Type Good Neighbourhood Constructible Complex Complex Link Constant Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [A]
    M. Artin, in Séminaire de Géométrie Algébrique 1963–1964 (SGA 4), Exposé XIV Théorème de ßnitude pour un morphisme propre; dimension cohomologique des schémas affines, Théorie des Topos et Cohomologie étale des Schémas, tome 3, Springer Lect. Notes 305, 1973.Google Scholar
  2. [A-F]
    A. Andreotti - T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713–717.CrossRefMATHMathSciNetGoogle Scholar
  3. [B-B-D]
    A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982), 1–172.MathSciNetGoogle Scholar
  4. [D]
    P. Deligne, La Conjecture de Weil II, Pub. I.H.E.S 52 (1980), 313–428.Google Scholar
  5. [Du]
    A. Dubson, Classes caractéristiques des variétés singulières, C. R. Acad. Se. 287 , 237–239.Google Scholar
  6. [GS]
    G. Gonzalez-Sprinberg, Cycle Maximal et invariant local d’Euler des singularités isolées de surfaces, Topology 21 (1982), 401–408.CrossRefMATHMathSciNetGoogle Scholar
  7. [G-Ml]
    M. Goresky – R. MacPherson, Intersection Homology II, Inv. Math. 71 (1983), 77–129.CrossRefMathSciNetGoogle Scholar
  8. [G-M2]
    M. Goresky — R. MacPherson, Stratified Morse Theory, Springer Ed., Berlin — Heidelberg — New York 1987.Google Scholar
  9. [G]
    A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Masson & North-Holland Ed., Paris, Amsterdam, 1968.Google Scholar
  10. [Ha]
    H. A. Hamm, Zum Homotopietyp Steinscher.Räume, J. reine angew. Math. 338 (1983), 121–135.CrossRefMATHMathSciNetGoogle Scholar
  11. [H-L]
    H. A. Hamm - Le D. T., Rectified homotopical depth and Grothendieck conjectures, in The Grothendieck Festschrift, Volume II, Progress in Mathematics 87, Birkhäuser 1990.Google Scholar
  12. [Har]
    R.M. Hardt, Stratifications of subanalytic sets and proper light subanalytic maps, Inv. Math. 38 (1977), 207–217.Google Scholar
  13. [Hi]
    H. Hironaka, Triangulation of algebraic sets, Proc. Symp. Pure Math. 29 (1975), Providence, 165–185.Google Scholar
  14. [LI]
    Lê D. T., Complex Analytic Functions with Isolated Singularities, to be published in Jour. Alg. Geom. and Sing.Google Scholar
  15. [L2]
    Lê D. T., Sur les cycles évanouissants des espaces analytiques, C. R. Acad. Se. 288 , 283–285.Google Scholar
  16. [L3]
    Lê D. T., Le concept de singularité isolée de fonction analytique, Advanced Stud, in Pure Math. 8 (1986), 215–227.Google Scholar
  17. [Ma]
    J. Mather, Notes on Topological Stability, Mimeographed Notes, Harvard University, July 1970.Google Scholar
  18. [Me]
    Z. Mebkhout, Local cohomology of analytic spaces, Pub. Res. Inst. Math. Sc. 12, (1977), 247–256.CrossRefMATHMathSciNetGoogle Scholar
  19. [Mil]
    J. Milnor, Singular Points of complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton, 1968.Google Scholar
  20. [Mi2]
    J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton, 1963.Google Scholar
  21. [P]
    D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375–386.Google Scholar
  22. [T]
    R. Thorn, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284CrossRefMathSciNetGoogle Scholar
  23. [V]
    J.L. Verdier, Dualité dans la cohomologie des espaces localement compacts, in Séminaire Bourbaki, Exposé 300, Publications de 1’IHP and Benjamin Pub., 1965–1966.Google Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Lê Dũng Tráng
    • 1
  1. 1.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations