Simultaneous Canonical Models of Deformations of Isolated Singularities

  • Shihoko Ishii
Conference paper


In this paper we continue our study of deformation of normal isolated singularities of dimension n ≥ 2. In the previous article [I2], we obtain the upper semi-continuity of the m-genus δ m (m ∈ N) of an isolated singularity under a deformation. It is natural to consider whether another m-genus γm (m ∈ N) has the same property or not.


Exact Sequence Exceptional Divisor Canonical Model Hodge Structure Singular Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [E]
    El Zein, F.: Degenenerescence diagonale. I, II, C.R.Acad Sci. Paris, t296 51–55, 199–202, (1983)Google Scholar
  2. [F]
    Fletcher, A.R.: Plurigenera of 3-folds and weighted hypersurfaces. Thesis submitted to the Unversity of Warwick for the degree of Ph.D (1988)Google Scholar
  3. [I1]
    Ishii, S.: On isolated Gorenstein singularities. Math. Ann. 270, 541-554 (1985)CrossRefMATHMathSciNetGoogle Scholar
  4. [I2]
    Ishii, S.: Small deformations of normal singularities. Math. Ann. 275, 139–148 (1986)CrossRefMATHMathSciNetGoogle Scholar
  5. [I3]
    Ishii, S.: The asymptotic behavior of plurigenera for a normal isolated singularity. Math. Ann. 286, 803–812 (1990)CrossRefMATHMathSciNetGoogle Scholar
  6. [I4]
    Ishii, S.: Quasi-Gorensteili Fano 3-folds with isolated non-rational loci, to appear in Compositio. Math.Google Scholar
  7. [I-W]
    Ishii, S. & Watanabe, K.: A geometric characterization of a simple K3-singularity, preprint 1990Google Scholar
  8. [K]
    Knöller, F.W.: 2-dimensionale Singularitäten und Differentialformen. Math. Ann. 206, 205–213 (1973)CrossRefMATHMathSciNetGoogle Scholar
  9. [KMM]
    Kawamata, Y.Matsuda, K.Matsuki, K.: Introduction to the minimal model problem. Algebraic Geometry in Sendai 1985 edited by Oda , Advanced Studies in Pure Math. 10, 283–360 Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford (1987)Google Scholar
  10. [K-SB]
    K oliar, J.& Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Inv. Math. 91, 299–338 (1988)CrossRefGoogle Scholar
  11. [L]
    Laufer, H.: Weak simultaneous resolution for deformations of Gorenstein surface singularities. Proc. of Symposia in Pure Math. 40 Part 2, 1–29 (1983)MathSciNetGoogle Scholar
  12. [Mo]
    Morales, M.: Calcul de quelques invariants des singularités de surface normale. Comptes rendes de séminaire tenu aux Plans-sur-Bex, 191–203 (1982)Google Scholar
  13. [M]
    Mori, S.: Flip theorem and the existence of minimal models for 3-folds. J. Amer. Math. Soc. 1, 117–253 (1988)MATHMathSciNetGoogle Scholar
  14. [N]
    Nakayama, N.: Invariance of the plurigenera of algebraic varieties under minimal model conjecture. Toplogy 25, No.2, 237–251 (1986)CrossRefMATHMathSciNetGoogle Scholar
  15. [P]
    Pinkham, H.C.: Deformation of Algebraic Varietiees with Gm Action, astérisque 20 (1974)Google Scholar
  16. [R]
    Reid, M.: Canonical 3-folds. Proc. Algebraic Geometry Anger 1979. Sijthoff and Nordhoff 273–310Google Scholar
  17. [S]
    Saito, K.: Einfach elliptische Singularitäten. Inv. Math. 23, 289–325 (1974)CrossRefMATHGoogle Scholar
  18. [St]
    Steenbrink, J.: Cohomologically insignificant degenerations. Compositio Math. 42, 315–320 (1981)Google Scholar
  19. [T]
    Tomari, M.: The canonical filtration of higher dimensional purely ellptic singularity of a special type, to appear in Inv. Math.Google Scholar
  20. [T-W]
    Tomari, M. & Watanabe, K.: On X2-plurigenera of not-logcanonical Gorenstein isolated singularities. Amer. Math. Soc. 109, 931–935 (1990)MATHMathSciNetGoogle Scholar
  21. [Wl]
    Watanabe, K.: On plurigenera of normal isolated singularities I, Math. Ann. 250, 65–94 (1980)MATHMathSciNetGoogle Scholar
  22. [W2]
    Watanabe, K.: Distribution formula of terminal singularities of a minimal resolution for simple K3-singularities. preprint 1989Google Scholar
  23. [Y]
    Yonemura, T.: Hypersurface simple K3-singularities. Tohoku Math. J. The second series 42, 351–380 (1990)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Shihoko Ishii
    • 1
  1. 1.Department of MathematicsTokyo Institute of TechnologyOh-Okayama, Meguro-ku, TokyoJapan

Personalised recommendations