Abelian Varieties of K3 Type and ℓ-Adic Representations

  • Yuri G. Zarhin


In this paper we study the algebraic envelopes of one-dimensional l-adic Lie algebras attached to the Galois actions on the Tate modules of Abelian varieties over finite fields. These envelopes are linear reductive commutative Lie algebras. We prove that these envelopes (after an extension of scalars) are generated by semisimple linear operators, whose spectrum coincides with the set of slopes of the Newton polygon of the Abelian variety. In addition, the multiplicity of each eigen value is equal to the length of the slope.


Finite Field Galois Group Abelian Variety Newton Polygon Galois Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bourbaki, Groupes et algébres de Lie, Chapitres 2–3, Hermann. Paris, 1972Google Scholar
  2. 2.
    N. Bourbaki, Groupes et algébres de Lie, Chapitres 7–8, Hermann, Paris, 1975.MATHGoogle Scholar
  3. 3.
    C. Chevalley, Theorie de groupes de Lie. Groupes Algébriques, Hermann, Paris, 1951.Google Scholar
  4. 4.
    N. Koblitz, p-adic numbers, p-adic analysis and sseta functions, second edition, Springer-Verlag, 1984.CrossRefGoogle Scholar
  5. 5.
    H. W. Lenstra Jr., F. Oort, Simple Abelian varieties having a prescribed formal isogeny type, J. Pure Appi. Algebra 4 (1974), 47–53.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    B. Mazur, Eigenvalues of Frobenius acting on algebraic varieties over finite fields, AMS Proc. Symp. Pure Math. 29(1975), 231–261.MathSciNetGoogle Scholar
  7. 7.
    D. Mumford, Abelian varieties, second edition, Oxford University Press, 1974.MATHGoogle Scholar
  8. 8.
    J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, second edition, Addison-Wesley, 1989.Google Scholar
  9. 9.
    J.-P. Serre, Representations ℓ-adiques, Kyoto Symposium on Algebraic Number Theory (1976), p.177–193, Japan Society for the Promotion of Science, Tokyo, 1977.Google Scholar
  10. 10.
    J.-P. Serre, Resumé de cours de 1984–85. Ann. Collège de France, Paris 1985.Google Scholar
  11. 11.
    J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, p. 93–110, Harper and Row, New York, 1965.Google Scholar
  12. 12.
    J. Tate, Endomorphisms of Abelian varieties over finite fields, Invent. Math.2(1966), 134–144.MATHMathSciNetGoogle Scholar
  13. 13.
    J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini(d’après T. Honda). Sém. Bourbaki 352 (1968/69), p. 95–110. Springer Lecture Notes in Math. 179(1971).Google Scholar
  14. 14.
    A. Weil, Basic Number Theory, Springer-Verlag, 1967.MATHGoogle Scholar
  15. 15.
    N. O. Nygaard, The Tate conjecture for ordinary K3 surfaces over finite fields, Inv. Math. 74(1983), 213–237.MATHMathSciNetGoogle Scholar
  16. 16.
    Yu. G. Zarhin, Abelian varieties, ℓ-adic representations and Lie algebras. Rank independence on I, Invent. Math. 55(1979), 165–176.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Yuri G. Zarhin
    • 1
  1. 1.Research Computing Center of the USSR Academy of SciencesPushchino, Moscow RegionUSSR

Personalised recommendations