Skip to main content

Analytic Expression of Voros Coefficients and Its Application to WKB Connection Problem

  • Conference paper
ICM-90 Satellite Conference Proceedings
  • 469 Accesses

Abstract

Usually, the WKB method starts from formal solutions (WKB or Liou ville-Green solutions) expanded in powers of the Planck constant, and connects these solutions by-asymptotic matching at turning points. Voros [V] proposed a resummation prescription of these formal calculations, and argued that his results should be deeply related with Ecalle’s theory of “resurgent functions.” Further progress along that line has been made by F. Pham and his coworkers [DDP]. We report another approach based upon an idea of Olver [O].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H., The inverse scattering transform — Fourier analysis for nonlinear problems, Stud. Appl. Math. vol. 53 (1974), 249–315.

    MathSciNet  Google Scholar 

  2. Boutroux, P., Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. Sci. Ecole Norm. Sup. (3) 30 (1913), 255–375; (3) 31 (1914), 99–159.

    MathSciNet  Google Scholar 

  3. Brézin, E., and Kazakov, V.A., Exactly solvable field theories of closed strings, Phys. Lett. B236 (1990) 144–150.

    Article  MathSciNet  Google Scholar 

  4. Brézin, E., Marinari, E.,and Parisi, G., A non-perturbative ambiguity free solution of a string model, Lett. Math. Phys. B242 (1990), 35–38.

    Google Scholar 

  5. Candelpergher, B., Nosmas, J.C., and Pham, F., Approche de la résurgence (to appear).

    Google Scholar 

  6. David, F., Loop equations and non-perturbative effects in two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990), 1019–1029.

    Article  MATH  Google Scholar 

  7. Delabaere, E., Dillinger, H., and Pham, F., Développements semi-classiques exacts des niveau d’énergie d’un oscillateur à une dimension, C. R. Acad. Sci. Série I, 310 (1990), 141–146.

    MathSciNet  MATH  Google Scholar 

  8. Douglas, M.R., and Shenker, H., Strings in less than one-dimension, Nucl. Phys. B335 (1990), 635–654.

    Article  MathSciNet  Google Scholar 

  9. Ecalle, J., Les fonctions résurgentes, I-III, Publ. Math. Orsay 1981, 1985.

    Google Scholar 

  10. Gelfand, I.M., and Dikii, L.A., Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russian Math. Surveys 30:5 (1975), 77–113.

    MathSciNet  Google Scholar 

  11. Gérard, C., and Grigis, A., Precise estimates of tunneling and eigenvalues near a potential barrier, J. Diff. Eq. 72 (1985), 149–177

    Google Scholar 

  12. Grigis, G., Sur l’équation de Hill analytique, Sem. Bony-Sjöstrand-Meyer 1984/85.

    Google Scholar 

  13. Gross, D.J., and Migdal, A.A., Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990), 127–130.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hille, E., Ordinary differential equations in the complex domain (John Wiley and Sons, New York, 1976).

    MATH  Google Scholar 

  15. Nishioka, K., A note on the transcendency of Painlevé’s first transcendent, Nagoya Math. J. 109 (1988), 63–67.

    MathSciNet  MATH  Google Scholar 

  16. Olver, F.W.J., Asymptotics and special functions, Academic Press 1974.

    Google Scholar 

  17. Umemura, H., On the irreducibility of the first differential equation of Painlevé, in Algebraic geometry and commutative algebra, in honor of Masayoshi Nagata, pp. 101–119 (Kinokuniya, Tokyo, 1988).

    Google Scholar 

  18. Voros, A., The return of quartic oscillator, Ann. Inst. H. Poincaré, Section A, 39 (1983), 211–338.

    Google Scholar 

  19. Wasow, W., Linear turning point problem, Springer-Verlag 1985.

    Book  Google Scholar 

  20. Zakharov, V.E., and Shabat, A.B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Funct. Anal, and Appl. 8 (1974), 226–235.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Takasaki, K. (1991). Analytic Expression of Voros Coefficients and Its Application to WKB Connection Problem. In: Kashiwara, M., Miwa, T. (eds) ICM-90 Satellite Conference Proceedings. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68170-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68170-0_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70085-2

  • Online ISBN: 978-4-431-68170-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics