Advertisement

Analytic Expression of Voros Coefficients and Its Application to WKB Connection Problem

  • Kanehisa Takasaki
Conference paper

Abstract

Usually, the WKB method starts from formal solutions (WKB or Liou ville-Green solutions) expanded in powers of the Planck constant, and connects these solutions by-asymptotic matching at turning points. Voros [V] proposed a resummation prescription of these formal calculations, and argued that his results should be deeply related with Ecalle’s theory of “resurgent functions.” Further progress along that line has been made by F. Pham and his coworkers [DDP]. We report another approach based upon an idea of Olver [O].

Keywords

Harmonic Oscillator Riccati Equation Neumann Series Connection Problem Connection Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKNS]
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H., The inverse scattering transform — Fourier analysis for nonlinear problems, Stud. Appl. Math. vol. 53 (1974), 249–315.MathSciNetGoogle Scholar
  2. [B]
    Boutroux, P., Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. Sci. Ecole Norm. Sup. (3) 30 (1913), 255–375; (3) 31 (1914), 99–159.MathSciNetGoogle Scholar
  3. [BK]
    Brézin, E., and Kazakov, V.A., Exactly solvable field theories of closed strings, Phys. Lett. B236 (1990) 144–150.MathSciNetCrossRefGoogle Scholar
  4. [BMP]
    Brézin, E., Marinari, E.,and Parisi, G., A non-perturbative ambiguity free solution of a string model, Lett. Math. Phys. B242 (1990), 35–38.Google Scholar
  5. [CNP]
    Candelpergher, B., Nosmas, J.C., and Pham, F., Approche de la résurgence (to appear).Google Scholar
  6. [D]
    David, F., Loop equations and non-perturbative effects in two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990), 1019–1029.MATHCrossRefGoogle Scholar
  7. [DDP]
    Delabaere, E., Dillinger, H., and Pham, F., Développements semi-classiques exacts des niveau d’énergie d’un oscillateur à une dimension, C. R. Acad. Sci. Série I, 310 (1990), 141–146.MathSciNetMATHGoogle Scholar
  8. [DS]
    Douglas, M.R., and Shenker, H., Strings in less than one-dimension, Nucl. Phys. B335 (1990), 635–654.MathSciNetCrossRefGoogle Scholar
  9. [E]
    Ecalle, J., Les fonctions résurgentes, I-III, Publ. Math. Orsay 1981, 1985.Google Scholar
  10. [GD]
    Gelfand, I.M., and Dikii, L.A., Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russian Math. Surveys 30:5 (1975), 77–113.MathSciNetGoogle Scholar
  11. [GG]
    Gérard, C., and Grigis, A., Precise estimates of tunneling and eigenvalues near a potential barrier, J. Diff. Eq. 72 (1985), 149–177Google Scholar
  12. [GG]a
    Grigis, G., Sur l’équation de Hill analytique, Sem. Bony-Sjöstrand-Meyer 1984/85.Google Scholar
  13. [GM]
    Gross, D.J., and Migdal, A.A., Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990), 127–130.MathSciNetMATHCrossRefGoogle Scholar
  14. [H]
    Hille, E., Ordinary differential equations in the complex domain (John Wiley and Sons, New York, 1976).MATHGoogle Scholar
  15. [N]
    Nishioka, K., A note on the transcendency of Painlevé’s first transcendent, Nagoya Math. J. 109 (1988), 63–67.MathSciNetMATHGoogle Scholar
  16. [O]
    Olver, F.W.J., Asymptotics and special functions, Academic Press 1974.Google Scholar
  17. [U]
    Umemura, H., On the irreducibility of the first differential equation of Painlevé, in Algebraic geometry and commutative algebra, in honor of Masayoshi Nagata, pp. 101–119 (Kinokuniya, Tokyo, 1988).Google Scholar
  18. [V]
    Voros, A., The return of quartic oscillator, Ann. Inst. H. Poincaré, Section A, 39 (1983), 211–338.Google Scholar
  19. [W]
    Wasow, W., Linear turning point problem, Springer-Verlag 1985.CrossRefGoogle Scholar
  20. [ZS]
    Zakharov, V.E., and Shabat, A.B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Funct. Anal, and Appl. 8 (1974), 226–235.MATHGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Kanehisa Takasaki
    • 1
  1. 1.RIMSKyoto UniversitySakyo-ku, Kyoto-shi 606Japan

Personalised recommendations