Advertisement

The Chiral Potts Model: from Physics to Mathematics and back

  • Barry M. McCoy

Abstract

We review the physics and mathematics of the chiral Potts spin chain with particular emphasis on computation of the energy levels by means of the solution of functional equations. We discuss in detail the relation of the integrable to the superintegrable case and the construction of the ground state in the massless level crossing regime.

Keywords

Riemann Surface Meromorphic Function Spin Chain Hermitian Manifold Good Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Howes, L.P. Kadanoff, and M. den Nijs, Nucl Phys. B215 [FS7] (1983), 169.CrossRefGoogle Scholar
  2. 2.
    G. von Gehlen and V. Rittenberg, Nucl Phys. B257 [FS14] (1985), 351.CrossRefGoogle Scholar
  3. 3.
    L. Onsager, Phys. Rev. 65 (1944), 117.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang and M.L. Yan, Phys. Letts. A123 (1987), 219.MathSciNetCrossRefGoogle Scholar
  5. 5.
    B.M. McCoy, J.H.H. Perk, S. Tang and C.H. Sah, Phys. Letts. A125 (1987), 9.MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Au-Yang, B.M. McCoy, J.H.H. Perk and S. Tang in “Algebraic Analysis” ed. M. Kashiwara and T. Kawai, Academic Press 1988, 29.Google Scholar
  7. 7.
    R.J. Baxter, J.H.H. Perk and H. Au-Yang, Phys. Letts. A128 (1988), 138.MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Au-Yang and J.H.H. Perk in Advanced Studies in Pure Mathematics, Vol. 19 (Kinokuniya-Academic 1989), 56.Google Scholar
  9. 9.
    G. Albertini, B.M. McCoy and J.H.H. Perk, Phys. Letts. A135 (1989), 159.MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Albertini, B.M. McCoy and J.H.H. Perk in Advanced Studies in Pure Mathematics, vol. 19 (Kinokuniya-Academic 1989), 1.Google Scholar
  11. 11.
    V.V. Bazhanov and Yu. G. Stroganov, J. Stat. Phys. 59 (1990), 799.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    R.J. Baxter, V.V. Bazhanov and J.H.H. Perk, Int. J. Mod. Phys. B 4 (1990), 803.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R.J. Baxter, Phys. Letts. A146 (1990), 110.MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Albertini, B.M. McCoy and J.H.H. Perk, Phys. Letts. A139 (1989), 204.MathSciNetCrossRefGoogle Scholar
  15. 15.
    B.M. McCoy and S.S. Roan, Phys. Letts. A 150 (1990), 347.MathSciNetCrossRefGoogle Scholar
  16. 16.
    C.N. Yang and C.P. Yang, Phys. Rev. 150 (1966), 321.CrossRefGoogle Scholar
  17. 17.
    G. Albertini and B.M. McCoy, Nucl Phys. B 350 (1991), 745.MathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Albertini, B.M. McCoy, J.H.H. Perk and S. Tang, Nucl Phys. B314 (1989), 741. MathSciNetGoogle Scholar
  19. 19.
    B. Davies, J. Phys. A 23 (1990), 2247.Google Scholar
  20. 20.
    C.M. Bender and T.T. Wu, Phys. Rev. 184 (1969), 1231.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1991

Authors and Affiliations

  • Barry M. McCoy
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations